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Abstract We discuss a resource-based planning framework where agents
are able to merge plans by exchanging resources. In this framework, plans
are specified as structured objects composed of resource consuming and
resource producing processes (actions). A plan itself can also be conceived
as a process consuming input resources and producing output resources.
A plan can be improved if we can remove actions from it while maintain-
ing goal realizability. We describe a reduction property that specifies how
one agent can improve its plan by using (free) resources from another
agent in such a way that goal realizability is preserved. The plan-merging
algorithm we use to specify plan merging in a multi-agent context is an
iterative, distributed, any-time application of this reduction property.
The performance of this algorithm has been evaluated using a planning
data set obtained from a taxi company. The quality of the algorithm is
measured by the decrease of the total distance driven by all taxis. By
allowing passengers to share rides, we create a trade-off between the ad-
ditional travel time of passengers and the total drive distance. Allowing
passengers to be a few minutes later at their destination and share rides,
a significant improvement of the plans can be obtained (from 5% up to
30% reduction of the taxi driving distance).

1 Introduction

Many complex coordination problems can be modeled as multi-agent planning
problems, i.e., a (distributed) set of interrelated AI-planning problems. Examples
of such problems are the coordination of transport organizations, armies, and
manufacturing processes, to name just a few. A common characteristic of such
problems is the need for managing dependencies, in particular resource depen-
dencies. Such dependencies are created by resource sharing, resource transaction,
resource consumption and resource production processes.

Existing planning frameworks specify plans as means of changing a state of
the world into another state and specify such a state by an unstructured set
of (atomic) facts relevant to the planning problem. This approach makes them
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less suitable to deal with resource dependencies in multi-agent problems, since
modeling a world consisting of resources requires a more structured (resource-
oriented) approach than modeling a world as a collection of facts.

In this paper we discuss such a resource oriented approach to deal with multi-
planning problems. This action resource framework (ARF) consists of resource
facts and actions. A resource fact aggregates the attributes of an (exchangeable)
object (resource) and specifies all the properties (attributes) of such an object
at a specific time into a single predicate. Actions are rules to transform a set of
resource facts.

Using the ARF-approach, we introduce a plan merging method to solve multi-
agent planning problems. This plan merging method requires each planner to be
capable of finding a solution for its own planning problem, e.g., by using an
existing refinement planning method [1]. After the plan construction phase, the
planners try to cooperate by exchanging resources in order to reduce costs. For
example, if two taxis have each planned to bring one passenger from the railway
station to the hospital at about the same time, plan merging might result in a
plan driving two passengers in one taxi.

We show that using resources as the atomic objects of a planning problem
and actions as resource-consuming and resource-producing processes appears to
work very well not only in specifying a plan merging algorithm, but also in
solving a practical multi-agent planning problem as coordinating taxi plans.

This paper is organized as follows: In the next section we take a closer look at
the action resource framework. Then we show how this framework can be used
to design and specify an algorithm to improve plans. In Section 3 we discuss the
plan merging problem and its solution using this framework. Then we present
experimental results obtained from using this plan merging algorithm on a data
set of the daily operations of taxi company. We finish by discussing related work
and possible extensions to the plan merging algorithm.

2 The action resource framework

The Action Resource Framework (ARF) is an improved version of the resource-
skill formalism [2,3].1 This framework has the following properties. Firstly, the
planning problem is specified by two sets of resources (one set specifying the set
of resources available, the other the set of resources to be achieved). Secondly,
actions are processes that consume and produce resources. Thirdly, a plan is
defined by a set of actions and an (acyclic) dependency relation between these
actions.

2.1 Actions and resources

In the ARF the two basic notions in planning, i.e., resource (facts) and actions
are described using a many-sorted logic. Goals and plans are derived notions
that are defined using resources and actions.
1 The ARF and the resource-skill formalism use a subset of linear logic [4] to specify

facts and actions.



A resource fact is the concise description of an object (resource) that is
relevant to an agent with respect to the planning problem at hand. Such a
resource is either a physical object such as a taxi or a passenger, or an abstract
conceptual notion such as an opportunity to travel, i.e., a ride.2 Syntactically,
an atomic resource fact is denoted by a predicate name together with a complete
specification of its attributes, together with their values. The predicate name
serves to indicate the type of resource mentioned in the fact (e.g., a taxi or a
passenger). If taxi is a resource type, having an attribute location loc and an
attribute num, then taxi(8 : num, A : loc) is an atomic resource fact describing
taxi number 8 in A. Since similar resources (i.e., resources with the same type and
the same values for the attributes) may occur multiple times in the same plan,
we add to each resource a unique occurrence identifier of sort identity , i.e., a
special index that is used exclusively to distinguish between different occurrences
of a resource in a plan. A resource of type t with i as (the value of its) occurrence
identifier is denoted as ti(. . .).

Values of attributes may be ground (i.e., constant), but may also be variables
or functions. In the latter case, a resource fact describes a set of ground resource
facts (instances) of the same resource type. For example, the following resource
refers to all taxis in location A: taxi(n : num, A : loc).

To specify one specific ground resource fact denoted by such a general re-
source fact, we introduce the notion of a substitution. A substitution θ replaces
variables3 occurring in a resource r by terms of the appropriate sort. We write
rθ to denote the resource r′ that results from replacing the variables occurring
in r according to θ. If R is a set of general resources, Rθ is a shorthand for
{rθ | r ∈ R}.

A set of goals G is specified by a set of general resources G = {g1, . . . , gn}. We
say that G is satisfied by a given set of resources R, abbreviated R |= G, if there
exists a ground substitution θ such that Gθ ⊆ R, i.e., there is a set of ground
instances of the goals that is provided by the resources in R. Two resources r1

and r2 are called equivalent, denoted by r1 ≡ r2, when they are equal except for
the value of their occurrence attribute.

Resource facts are used to model the state of the world (as far as it is relevant)
by enumerating the set of resource facts that are true at a certain time point.
Possible transitions from one state to another are described by actions. An action
is a basic process that consumes and produces resources. An action o has a set
of input resources in(o) that it consumes, and a set of output resources out(o) it
produces. Furthermore, an action may contain a specification param(o) of some
variables that occur in the set of output resources as parameters of the action.
To ensure that each output resource out is uniquely defined, it may only contain
variables var(out) that already occur in the input resources or in the set of the
parameters. This is formally defined as follows.

2 Abusing language, we use the notions of a resource and a resource fact interchange-
ably.

3 with the exception of occurrence identifiers



Definition 1. An action specification is a formula
oid(x1, . . . , xn) : ϕ{inid,−i|1≤i≤m} ⇒ ϕ{outid,i|1≤i≤k} where

1. id is a variable of sort identity,
2. x1, . . . , xn are the parameters of the action,
3. ϕ{inid,−i|1≤i≤m} is a conjunction of general (input) resources inid,−i(. . .),
4. ϕ{outid,i|1≤i≤k} is a conjunction of general (output) resources outid,i(. . .),

such that for all 1 ≤ i ≤ k, var(outid,i) ⊆
⋃

j var(inid,j) ∪ {xl | 1 ≤ l ≤ n}.

Remark 1. The value (id,−i) of the occurrence id for the i-th input resource is
inherited from the value of the occurrence identifier of the action o in which its
is used.4 Analogously the value (id, i) of output resources is constructed. As can
be seen later on, this mechanism provides us with unique occurrence labels of
resources in plans.

Example 1. Consider the following action

moveid(y : loc) : taxi(id,−1)(n : num, x : loc) ⇒
ride(id,1)(x : loc, y : loc) ∧ taxi(id,2)(n : num, y : loc)

This action specifies how a taxi may move from a source location x to a destina-
tion y and requires the taxi to be present at the source x. It “produces” a taxi
at the destination and the ride opportunity (for passengers) to travel with this
taxi from x to y.

Let O be a finite set of action specifications. The set O is said to be a set of
(concrete) actions over O if (i) every action occurring in O is obtained from
an action oid() in O by substituting a unique ground value v for its occurrence
identifier id and (ii) variables in actions are standardized apart, i.e., for each
o 6= o′ ∈ O we have var(o) 6= var(o′).

A concrete action o ∈ O can be applied to a set of (ground) resources R if
there exists a ground substitution θ such that in(o)θ ⊆ R. Application of this
action to R results in consuming the set in(o)θ of input resources while producing
the set out(o)θ. The result of o applied to R (under θ) therefore is a resource
transformation: starting with R, the set R \ in(o)θ ∪ out(o)θ is produced.

The set res(O) is the set of all resources mentioned in the input in(o) or
output out(o) of actions o ∈ O. The set cons(O) specifies the set of all resources
consumed using actions in O: cons(O) =

⋃
o∈O in(o), while the set of resources

produced equals prod(O) =
⋃

o∈O out(o).

2.2 Plans

In general, a single action applied to an initial set of resources is not sufficient
to achieve a desired state. Often, a set of actions have to be applied in some
partial order to produce the desired effect. A specification of only the ordering
4 Like resources, the same action can be used at different places in a plan. To distin-

guish these occurrences, we use occurrence identifiers for actions, too.



of actions, however, in general is not sufficient to describe a plan in sufficient
detail. We also need to specify for each consumed resource, which produced
resource it is dependent upon. Such a partially ordered set of actions with a
specification of the dependency relation between resources is called a plan. To
specify how actions are interrelated, we use the notion of a dependency function.

Definition 2. Let O be a set of (concrete) actions. A dependency function is
an injective function d : cons(O) → prod(O)∪ {⊥} specifying (in a unique way)
for each resource r to be consumed which resource r′ produced by another action
is used to provide r (or ⊥ if r is not produced by an action in O, i.e., r is an
input resource).

Sometimes we need the inverse d−1 of d, which is defined as follows: for every
r′ ∈ prod(O) such that d(r) = r′, d−1(r′) = r, and for every r′ ∈ prod(O) not
occurring in ran(d), d−1(r′) = ⊥.

As mentioned before, plans are composed of partially ordered actions. Since
a dependency function d specifies an immediate dependency of input resources
of an action on output resources of another action, d can only specify a valid
dependency if (i) the resources involved are equivalent and (ii) d generates a
partial ordering of the actions in O.

The first requirement is met if there exists a substitution θ such that for two
resources r and r′, d(r) = r′ implies rθ ≡ r′θ, that is θ is a unifier for every
pair of resources (r, d(r)). In particular, we are looking at a most general unifier
(mgu) θ with this property.

The second condition requires that there are no loops in the dependency
relation between actions generated by d: we say that o directly depends on o′,
abbreviated as o′ �d o, if resources r ∈ in(o) and r′ ∈ out(o′) exist such that
d(r) = r′. Let <d = �+

d be the transitive closure of �d. Then the second
condition simply requires <d to be a (strict) partial order on O.

Now a plan can be defined as follows.

Definition 3. A plan P over a set of actions O is a triple P = (O, d, θ) where
d is a dependency function specifying dependencies between equivalent resources
and generating a partial order <d on O, while θ is the mgu of all dependency
pairs (r, d(r)) with r, d(r) ∈ res(O). The empty plan (∅, ∅, ∅) is denoted by 6♦.

Given a plan P = (O, d, θ), the set In(P ) = {rθ | r ∈ cons(O), d(r) = ⊥} is
the set of input resources of P , i.e., the set of resources not depending on other
resources in the plan. Analogously, the set Out(P ) = {rθ | r ∈ prod(O), d−1(r) =
⊥} of output resources of P is the set of resources that are not consumed by
actions in the plan. Furthermore, we define prod(P ) = prod(O)θ and cons(P ) =
cons(O)θ. Note that resources from prod(P ) may be consumed by other plans
to produce resources.

A planning problem Π = (O, I, G) is given by a set of ground initially avail-
able resources I, a set of goal resources G, and a set of action specifications O

that can be used for this problem domain to transform resources. A solution



to such a planning problem Π is a plan P = (O, d, θ) where O is a set of con-
crete actions over O and there exists a substitution τ such that In(P )τ ⊆ I and
Out(P )τ |= G.
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Figure 1. Dependencies between the resources and actions.

Example 2. Consider the following taxi planning problem Π = (O, I, G). The
set of action specifications is O contains move action specifications analogously
to the move action in Example 1, and the following travel action specifications:

travelid : passgr(id,−1)(n : name, x : loc) ∧ ride(id,−2)(x : loc, y : loc) ⇒
passgr(id,1)(n : name, y : loc)

The initial state I is defined as

I =
{

passgr(0,1)(M : name, Uni : loc), taxi(0,2)(7 : num, base : loc)
}

.

The goal G is specified as the single resource passgr(t,i)(M : name, station : loc).
To solve this problem, a ground plan5 P = (O, d, θ) is devised, where

5 A plan P = (O, d, θ) is ground if every resource mentioned in it is a ground resource.



– the set of concrete actions O consists of two instances of the move action
and an instance of the travel action,

– d is the relation as given by Figure 1 (including the dependency on the
resources of the initial state), and

– θ is defined as the composition of the substitutions given in Table 1.

It can be easily seen that d is a valid dependency function, that In(P ) ⊆ I and
since passgr(6,1)(M : name, station : loc) ∈ Out(P ), Out(P ) |= G. Hence, P is a
solution to Π.

Table 1. The definitions of the substitutions for the three actions in Figure 1.

variable value

x1 base
y1 Uni

x2 Uni
y2 station

n6 M
x6 Uni
y6 station

2.3 The plan reduction property

We assume that associated with each concrete action o ∈ O there is a positive in-
teger value cost(o), representing the cost of executing o. Agents, once having con-
ceived a plan P = (O, d, θ) will aim at reducing the cost cost(P ) = Σo∈Ocost(o)
of their plan, while maintaining goal-realizability. To reduce the costs of a plan
an agent therefore might try to remove some action o from its plan, by replacing
every output resource r of o that is used in the plan, i.e. d−1(r) 6= ⊥, by another
other, freely available resource r′ occurring in the current plan or by an input
resource of o. The resources r′ that are not used in a plan to attain the goals are
called free resources and are defined as follows:

Definition 4. Given a plan P = (O, d, θ) that is a solution to a problem Π =
(O, I, G), and a substitution θG such that GθG ⊆ Out(P ), the set of free re-
sources is defined as Free(P,Π) = (I \ In(P )) ∪ (Out(P ) \GθG).

If, using Free(P,Π)∪ in(o)θ, every output resource can be replaced such that a
cheaper valid plan P ′ can be obtained, we say that P is reduced by removing o.

Note that if o cannot be removed, a nonempty subset of its (used) output
resources cannot be replaced. We call this set the request set RequestSet(P,Π, o)
belonging to o and note that it contains the set

{
r | r ∈ out(o), d−1(r) 6= ⊥

}
\

(Free(P,Π) ∪ in(o)) . 6 Viewed from a multi-agent perspective, these request
6 The exact specification of the request set is more involved and requires the check for

dependencies of free resources upon used output resources of o.



sets can be used for resource transactions between agents: if free resources are
available from other agents, we can show that a successful reduction of the plan
P exists if these free resources are sufficient to attain RequestSet :

Theorem 1. Given a set of agents A, for each agent i ∈ A a problem Πi and
a plan Pi that solves this problem, the action o in the plan Pj of agent j can be
removed if ⋃

i∈A\{j}

Free(Pi,Πi) |= RequestSet(Pj ,Πj , o).

A proof of this theorem can be found in [5]. This reduction property is used
in the plan merging algorithm to be discussed next.

3 Plan merging

The principal idea behind plan merging is that agents can reduce the cost of
their own plan, i.e., they can remove actions for which the results (the resources
produced by these actions) are readily available at other agents. To facilitate
the exchange of resource facts, we assume that a trusted third party acts as the
auctioneer.

The plan merging algorithm (Algorithm 1) works as follows: The auctioneer
announces when the agents can start the plan merging, thereby announcing some
minimum allowed cost reduction value. All agents deposit their request sets with
this auctioneer. Each request set corresponds with the removal of an action from
an agent’s plan and contains a set of resource facts the agent needs to remove
the particular action. Furthermore, the request contains a cost reduction value
defined by the difference in costs between the old plan and the resulting plan if
the exchange would succeed.

The (greedy) auctioneer deals with the request with the highest potential
cost reduction first. We assume that all the agents honestly announce their cost
reduction values. Right before each auction round starts, the requesting agent
(ai) is asked for the specific set of resource facts that has to be replaced by
resource facts of other agents – this set is called the RequestSet . This set is not
necessarily equal to the set in the initial request, since other exchanges influence
the availability of resource facts for the agents. Next, the set of requested resource
facts is sent to each agent, except to ai. The agents return all their free resource
facts for which there is an equivalent one in the request set RequestSet , and
include the price of each of their offered resource facts. When all bids (collected
in R′) are collected by the auctioneer, it selects for each requested resource fact
the cheapest bid.

If for each resource fact in RequestSet a replacement can be found, the re-
questing agent ai may remove the corresponding action(s). Furthermore, we have
to add dependencies between the providing agents and the initial resource facts
for the requesting agent. At the end of each successful exchange each involved
agent has to update the cost reduction values of all of their requests, because this



Algorithm 1 plan merging(A)
1. auctioneer broadcasts minimum allowed cost reduction.
2. auctioneer retrieves requests with their cost reduction from all agents A.
3. while some requests left do

3.1. get the request with the highest cost reduction.
3.2. ask the requesting agent ai for the required resource facts RequestSet.
3.3. for each agent aj ∈ A \ {ai} do

3.3.1. ask aj for free res. facts equivalent to RequestSet.
3.3.2. add these resource facts to R′.

3.4. if R′ ⊇ RequestSet then

3.4.1. let R′′ ⊆ R′ be the cheapest set that satisfies RequestSet.
3.4.2. add for each r ∈ RequestSet the corresponding dependency to
R′′.
3.4.3. remove as much actions as possible from the plan Pi of ai.
3.4.4. for each involved agent, update the cost reduction of all re-
quests.

value can change as the agent can now have more or less resource facts available.
One could repeat this process until none of the auctions has been successful.

The plan-merging algorithm is an any-time algorithm, because it can be
stopped at any moment. If the algorithm is stopped, it still returns an improved
set of agent plans, because it uses a greedy policy, i.e., dealing with the requests
with the largest potential cost reduction first. Algorithm 1 can be shown to have
a worst-case time complexity of O(n2) where n is the number of actions of the
plans of all agents involved in plan merging [2].

4 Experimental results

After the formal analysis of the plan-merging algorithm, three questions re-
mained which we tried to answer by doing experiments.

– Concerning the performance of the plan merging algorithm, we are interested
in the practical aspects of the time complexity. For example, is the quadratic
worst-case complexity applicable also to real data and what is the size of
doable instances of plan merging problems.

– Concerning the applicability, we would like to establish experimentally whether
plan merging can be used in realistic cases to obtain a non-negligible cost
reduction.

– Finally, we would like to explore the effect of the greedy approach in real
applications to get an idea about the relation between the cumulative im-
provement versus the available run time.

The ideal data set to use for these experiments would consist of the schedules of
several taxi companies in the same region and for the same time that are prepared



to have their passengers share taxis. Such information is very hard to obtain.
Instead, we succeeded in retrieving a data set from one large taxi company.7 We
created a hypothetical experiment for multiple organizations given a centrally
created schedule by the company’s call center as follows: The schedule for 35 taxis
from this one taxi company were used to represent separate plans for 35 virtual
taxi companies. These plans were merged using the plan merging algorithm. We
assume that the results for merging the plans of these virtual taxi companies give
a reliable indication of a situation where real taxi companies are (co)operating.

The received schedule contains about 600 rides a day (600 move actions for
the taxis and 600 travel actions) of 35 taxis exactly as they were planned in the
months January and February 2002. This information includes a taxi number,
(start and end) date and time, number of passengers and the origin and the
destination location of each order. From this information we constructed an
action resource plan for each of the taxis, and we tried to find improvements
over these plans using the plan merging algorithm.

We assume that picking up a passenger along an already planned route does
not invalidate the existing plan of a taxi. Furthermore, we assume that in this
domain the costs of a plan equal the sum of the costs of the move actions where
the cost of each move action equals the distance driven the taxi during this
action. Consequently, our goal is to reduce this distance by exchanging orders
among taxis (agents). Therefore, one of the resource facts describes a passenger
and its attributes (destination, preferred pickup time, etc). The most important
resource fact, however, describes the ride of a taxi and models the possibility for
passengers to travel from one location to another with a taxi. This is the only
type of resource fact that is exchanged between taxis and is involved in plan
merging.

Remark 2. If a customer is transported by taxi A instead of by taxi B the ad-
ditional distance and time needed by taxi A is estimated using the euclidean
distance measure and an analysis of all drives as extracted from the data set. In
principle, the (ground) plan merging algorithm is only useful if one taxi drives
exactly past the pick-up and the delivery location of a passenger assigned to
another taxi at exactly the right time (equivalent resources). This almost never
happens. Therefore, we adapt the following notion of equivalence: we allow an
exchange if the passenger’s estimated arrival time is not increased by more than
∆t minutes and the detour length of taxi A is less than the distance reduction
of taxi B.

4.1 Run-time analysis

First we analyze the running time of plan merging. Given the worst-case quadratic
upperbound, we expect a quadratic run-time complexity to occur since the num-
ber of exchangeable resources is about quadratic in the number of actions. To
test this hypothesis, we run the algorithm with a fixed ∆t of 3, 6, and 15 min-
utes and a fixed day on a number of plans varying from 2 to 35. Each test is
7 Taxi Zeevang, Purmerend, The Netherlands.



performed 20 times on a randomly selected set of taxis. For each run we store
the total number of actions of all involved plans and the run time on a 1GHz
Pentium processor. The results of these runs can easily be fitted with a quadratic
function (about 2·10−5n2 to 4·10−5n2), as can be seen in Figure 2. The standard
error of these fits is very small, as can be seen in the first column of Table 2.
Performing these experiments we observed that it takes less than a minute to
merge the plans for one day of all 35 taxis (1200 actions).
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Figure 2. The run time versus the number of actions for three different values for ∆t.

Table 2. The standard deviation of the fits in Figure 2 and 3.

∆t run-time fit sd. reduction fit sd.

3 0.310 12.6
6 0.468 21.0

15 0.517 30.9

4.2 Improvement of the efficiency

Next, we are interested in the applicability of plan merging i.e., the cost reduc-
tion achieved. For each run we compared the total distance driven by the taxis,
before and after the plan merging algorithm. In Figure 3, the difference between
these values is plotted against the number of actions. As expected, more relaxed
time constraints on the arrival time of the passengers lead to more improve-
ment. Furthermore, the total improvement seems to be linear in the number of
actions. The standard deviation of this fit is shown in the last column of Table 2.
The relative improvement in drive distance (in percentage) is given in Table 3.
The main disadvantage of reducing the distance driven by the taxis is that the



passengers need more time to get to their destinations. Table 3 also shows the
increase in passenger travel time (in percentage).

Table 3. The decrease of the drive distance and the increase of the passenger travel
time (relative, by giving a percentage (%) and the standard deviation (sd)).

∆t reduction distance (%) sd. increase time (%) sd.

3 3.32 2.06 2.60 1.85
6 8.41 4.12 7.05 3.94

15 18.0 7.62 16.4 7.26
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Figure 3. The improvement in drive distance versus the number of actions for three
different values of ∆t.

The strong relation between the plan size and both the reduction of the
distance and the increase of the travel time can be explained by the fact that
between larger plans more combinations are possible and thus more exchanges
can be made.

To be able to compare the reduction of the drive distance of the taxis and
the increase of the total travel time of the passengers, we calculated the relative
values. The relation between the relative reduction of the drive distance (by
sharing rides) and the relative increase of the total travel time of the passenger
is shown in Figure 4. The correlation coefficient of the relation between the
relative reduction of drive distance and the increase in passenger travel time is
0.947 (for ∆t ≤ 15).

Remark 3. For large plans and a pick-up and drop-off margin of at most 6 min-
utes, an increase of 11 percent in travel time was shown to result in a distance
reduction of about 13 percent. Moreover, when passengers are allowed to arrive
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within an interval of 15 minutes, as is the current agreement for most Dutch
low-budget elderly transportation services, the improvement can be up to 30
percent.

4.3 Greedy behavior

The greedy behavior of the algorithm is analyzed by the following experiment.
For a specific run of the algorithm (in this case for two days (10 and 45) and
for 34 agents), both the time and the total distance driven by the taxis are
registered after each auction. The results of this experiment can be found in
Figure 5. Clearly the additional improvement decreases over time. This greedy
behavior makes the algorithm quite suitable to be used as an anytime algorithm.
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Figure 5. The relative reduction of the total drive distance versus the run time for two
different days.



5 Discussion, Related and Future work

Formalism We discussed a formal resource based logic framework for multi-
agent planning. The most popular planning specification systems proposed in
the literature are based on first-order logic (cf. STRIPS [6] and PDDL [7]).
STRIPS resembles our formalism with respect to the fact that for each operator
explicitly is stated which atomic facts are to be deleted from the current state and
which have to be added to create the new state. However, an action in the ARF
by default deletes all its inputs. In the ARF it is easier to model cooperation
between agents, because there we need to specify exchangeable objects. ARF
provides such a specification by using resources: all relevant attributes of an
exchangeable object are collected within one resource fact.

We remark that, like the planning logic by Masseron et al.[8], ARF can
be conceived as based on a subset of linear logic [4]. Since resources can only
be used once (no absorption), it seems quite natural to study the relationship
between planning and linear logic. However, the fragment of linear logic used
for the embedding is very restricted. It turns out that actions and resources
have to be translated as a linear theory, using only one linear logical connective
(multiplicative conjunction) in the deterministic case, and two (multiplicative
conjunction and additive disjunction) in the nondeterministic one. In their paper,
Masseron et al.[9] do not touch the problem of plan merging. In our opinion, our
presentation of the planning formalism is better suited to study the operational
behavior of planning.

Many planning systems have integrated the scheduling of resources by in-
cluding some sort of Constraint Satisfaction Problem or Linear Programming
problem solver [10,11,12] to deal with, e.g., consumable goods. In our work we
may use such solvers to deal with the individual constraint satisfaction problems
for the agents. Our contribution, however, lies in the use of planning algorithms
in a multi-agent context. The importance of resources in a multi-agent system
has led to making resource facts the main concept in modeling the coordination
of the actions of agents.

Plan merging Using the ARF, we specified a polynomial any-time plan merging
algorithm. This algorithm uses the idea that plan reduction can be obtained by
removing actions from a plan and maintaining goal realizability by using (free)
resources from other agents. We note that the plan merging algorithm discussed
in this paper achieves a locally optimal merged plan. It is not difficult to show
that searching for a globally optimal plan is NP-hard.

Application A schedule for 35 taxis was used to create a hypothetical experiment.
In this experiment we divided the taxis randomly over a set of artificial taxi
companies (i.e., the agents). The plans of these agents were then merged using the
plan merging algorithm. These experiments showed that when the taxi company
would allow passengers to share a taxi, the reduction of the costs of a plan
were strongly related to the additional travel time of passengers. Furthermore,



evidence showed that the ground plan merging algorithm had a very good any-
time behavior and a quadratic time complexity with a very low constant.

Summarizing, we conclude that both the formalism and the algorithm work
quite well on realistic data and we believe that the proposed problem definition
and the formalism are useful for further research on coordinated planning.

Extensions to Multi-agent Planning A disadvantage of plan merging in general is
that it cannot be used in situations where an agent already needs to cooperate
with others to construct a plan. To deal with these cases, the plan merging
scheme has to be extended to a multi-agent planning method by (i) allowing
agents to be able to request services from other agents and include the results in
their plans, or (ii) by allowing agents to be able to offer services to other agents
and, upon a request, add these to their plans. Exchanging services enables agents
to not only offer resource facts that are already in its plan (and unused), but also
to adapt its plan to produce resource facts that are desired by other agents. Such
extensions should lead to a distributed algorithm where self-interested agents
create plans including coordinated (efficient and conflict-free) actions.

Most solutions to multi-agent planning problems, however, (i) cooperatively
create plans for all agents without dealing with the self-interestedness of agents,
called cooperative distributed planning [13], such as PGP [14,15], (ii) focus on
task allocation [16] and conflict resolution before planning [17,18], or (iii) con-
flict resolution after planning [19]. An extension of the plan merging algorithm
should integrate coordination and conflict resolution in the planning phase, while
maintaining the autonomous and self-interested aspects of agents.

We expect that such a coordinated planning algorithm yields even better
results than the current plan merging algorithm, since opportunities to cooperate
can be better utilized. Both the basic algorithm and the extensions use a resource
fact oriented view on the world, and can be combined with most existing planning
techniques. Such a general approach to coordinating plans of multiple agents
might be used to solve many practical coordination problems, such as hospital
scheduling, coordinating the transportation of goods or people, and managing
the planning of joint forces on a mission of the UN.

To be able to use the proposed methods on integrating planning and coor-
dination in these situations, still much work need to be done. Firstly, we need
an adequate way to reward agents that offer services and share resource facts.
Secondly, we need to know how to deal with agents that cannot or do not fulfill
their contracts. Furthermore, we should test the developed algorithms in more
realistic environments and improve them with (maybe even domain-dependent)
heuristics. In addition, we need to look at a more dynamic (continual) version of
the proposed algorithm where planning, replanning and execution are integrated.
Finally, such approaches cannot be used in open multi-agent environments (e.g.,
the Internet) before a way is devised to deal with different ontologies (i.e., what
are the resource facts in this domain), and a secure standard for agent commu-
nication and negotiation is chosen.
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