
Plan Repair as an Extension of Planning

Roman van der Krogt∗ and Mathijs de Weerdt
Delft University of Technology

The Netherlands
{r.p.j.vanderkrogt | m.m.deweerdt}@ewi.tudelft.nl

Abstract

In dynamic environments, agents have to deal with chang-
ing situations. In these cases, repairing a plan is often more
efficient than planning from scratch, but existing planning
techniques are more advanced than existing plan repair tech-
niques. Therefore, we propose a straightforward method to
extend planning techniques such that they are able to re-
pair plans. This is possible, because plan repair consists of
two different operations: (i) removing obstructing constraints
(such as actions) from the plan, and (ii) adding actions to
achieve the goals. Adding actions is similar to planning,
but as we demonstrate, planning heuristics can also be used
for removing constraints, which we call unrefinement. We
present a plan repair template that reflects these two opera-
tions, and we present a heuristic for unrefinement that can
make use of an arbitrary existing planning technique. We ap-
ply this method to an existing planning system (VHPOP) re-
sulting in POPR, a plan repair system that performs much bet-
ter than replanning from scratch, and also significantly better
than another recent plan repair method (GPG). Furthermore,
we show that the plan repair template is a generalisation of
existing plan repair methods.

Introduction
When plan construction is completed, our work begins. Any
agent executing a plan should be monitoring its environment
and the actual effects of its actions, because there are more
ways in which a plan can go wrong than there are actions
an agent can execute. In many occasions, the agent needs to
alter parts of its plan to be able to still attain its goals. We
know that in theory modifying an existing plan is no more
efficient than a complete replanning (from the current state)
in the worst case (Nebel & Koehler 1995). However, we ex-
pect that in practice plan repair is often more efficient, since
a large part of the plan usually is still valid. On top of this,
in many problem domains it may be quite costly to change
your whole plan, for example because of bookings or com-
mitments to other agents that have been made based on the
original plan. Furthermore, in mixed initiative settings, the
user might more easily accept a plan that was repaired (and
thus resembles the original plan) over a plan that was cre-
ated from scratch (and might look entirely different). These

∗Supported by the Freight Transport Automation and Multi-
Modality (FTAM) program of the TRAIL research school for
Transport, Infrastructure and Logistics.

considerations directly lead to the following problem: how
can an existing plan be repaired such that the (updated) set
of goals can be obtained from the (updated) initial state?

Currently, already quite a number of systems that do some
form of plan repair exists. However, there are many more
planning systems than there are ways to deal with plan re-
pair. Moreover, in general, these planning systems perform
much better than the average plan repair system. Plan re-
pair technology could benefit a lot from the knowledge and
bright ideas in the AI planning research community, if there
was a straightforward way to use these in plan repair sys-
tems. Such a method to do plan repair using an extension of
(normal) planning technology is exactly the main contribu-
tion of this paper.

In our approach a couple of ideas come together. First,
because of bookings and commitments to others, plans that
are not too different from the original plan are preferable.
Therefore, the plan repair process should start with the orig-
inal plan. Second, two different operations in plan repair can
be distinguished: (i) removing actions from the plan that ac-
tually make it harder to attain the goal(s), and (ii) adding
actions that bring the agent closer to the goal. Observe that
the latter operation is similar to planning. Our third and final
idea is that planning also can be used for the former opera-
tion: heuristics similar to planning can be used to determine
whether an action should be removed.

In the next two sections these ideas are explained in more
detail. First, a general template is given that describes the
dissection into adding and removing actions, and, next, a
method is presented for removing exactly those actions from
the plan that are expected to have a negative influence on the
plan length. In the fourth section we discuss how this algo-
rithm can be combined with theVHPOP planner (Younes
& Simmons 2003) using the general template. The perfor-
mance of the resulting plan repair system, which we call
POPR, is compared to (re)planning from scratch and to an-
other recent plan repair method,GPG (Gerevini & Serina
2000). Finally, we show that other plan repair systems can
be seen as specific instances of our general plan repair tem-
plate. First, however, we give a short summary of refinement
planning.

A Template for Plan Repair
Refinement Planning
The construction of a plan can be seen as an iterative refine-
ment of the set of all possible plans. This view is calledre-
finement planning(Kambhampati, Knoblock, & Yang 1995;
Kambhampati 1997). It is shown that most existing (classi-
cal) planning algorithms can be conceived in this way. The
idea behind refinement planning is that we start with the set
of all possible sequences of actions and reduce this set by
adding constraints (such as “all plans in this set should at
least have this specific action”). Besides actions, such con-
straints can impose an ordering or specify that a particular
proposition should hold at a specific point (calledpoint truth
constraints, or PTC, by Kambhampati) or during a specific
intercal (interval preservation constraints, IPC). We keep
adding further constraints until all plans that match the con-
straints are solutions to the planning problem. During this
refinement, not this set of allcandidateplans is stored, but
the constraints are stored in a so-calledpartial plan. Given
a partial planP, the set of candidates it represents is denoted
by candidates(P).

A refinement strategydefines how a partial plan is to be
extended and the set of candidates thus refined. A refinement
strategyR is a function that maps a partial planP to a set of
partial plansP = {P1, . . . ,Pn}, such that for each of the new
partial plans, the candidate set is a subset ofcandidates(P).
A template for a general refinement planner looks as fol-
lows: starting with an empty constraint set, represented by
an empty partial plan, sayP, check whether a minimal can-
didate ofP is a solution to the problem at hand. If so, we
are done. If not, we apply a refinement strategyR to obtain
a collection of partial plansP = R(P) where each partial
plan has a different additional constraint with respect toP.
Select a componentP′ ∈ P and check again whether a min-
imal candidate of this partial plan is a solution and applyR
again if not. Proceed until a solution is obtained, or the set
of partial plans is empty, in which case we backtrack.

Unrefinement Planning
For plan repair, we cannot use the same template directly,
because a refinement strategy can onlyadd constraints. If
this restriction is relaxed, refinement planning can be seen
as a unifying view on both planning and plan repair (van der
Krogt, de Weerdt, & Witteveen 2003). However, this is not
very elegant, and, more importantly, it hides the fact that
plan repair really constitutes two separate activities: remov-
ing actions and other constraints from the plan that are ob-
structing the successful alteration of the plan, and the (often
subsequent) expanding of the plan to include actions solving
the planning problem. Therefore, we propose to include an
unrefinement strategyfor plan repair in the template algo-
rithm.

The main idea behind our plan repair template is that plan
repair consists of two phases (that can occur in any permu-
tation, depending on the particular method): the first phase
involves the removal of constraints from the current partial
plan that inhibit the plan from reaching its goals. The sec-
ond phase is a regular planning phase, in which the partial

Algorithm 1 PLAN REPAIR (P,Π,H)
Input: A partial plan P, a problem Π and a historyH
Output: A solution to Π or ‘fail’

begin
1. if candidates(P) is empty then

1.1. return fail.
2. if solution(P,Π) returns a solution ∆ then

2.1. return ∆.
3. if we chooseto unrefine then

3.1. Select unrefinement strategy D and generate new
plan set 〈P,H ′〉 = D(P,H).

4. else
4.1. Select refinement strategy R and generate new plan
set 〈P,H ′〉 = R(P,H).

5. Non-deterministically select a component Pi ∈ P and call
PLAN REPAIR(Pi,Π,H ′).

end

plan is extended (refined) to satisfy the goals. For exam-
ple, suppose that we have a plan for driving to a meeting by
car. However, upon walking to the car we see that one of its
tyres is flat. A simple repair for this plan could be to add
actions that change the tyre with a spare one, and drive to
the meeting as planned. Now suppose this is a very impo-
rant meeting at which you do not wish to come late. In that
case, replacing the tyre could cost too much time. Instead,
it would be better to remove the drive action from the plan,
and to replace it with actions using a taxi for transportation.
Thus, to repair a plan, a planner should not only employ a
refinementstrategy for extending the plan with actions that
will reach the goals (such as replacing the tyres in the exam-
ple). Planners should also employ anunrefinementstrategy
for retracting constraints from the partial plan (removing ac-
tions from a plan that are obstructing a proper solution, such
as the drive actions in the previous example).

An extension of the refinement planning template that
allows for unrefinement strategies to be employed, can be
found in Algorithm 1. This plan repair template differs from
refinement planning in only two ways. First, we choose be-
tweenunrefiningthe plan, i.e. removing refinements (con-
straints), orrefining the plan, i.e. adding refinements. For
unrefining a plan we select an unrefinement strategyD and
apply it to the partial planP (step 3.1). Refinement takes
place as in the regular refinement planning approach (step
4.1). Second, we introduce ahistory H that some ap-
proaches require to keep track of the refinements and un-
refinements they have made, in order to be able to prevent
doing double work (and endless loops). Each call to a refine-
ment or unrefinement strategy updates the history to reflect
which partial plans have already been considered. Tech-
niques like Tabu-search (Glover & Laguna 1993) may be
employed to best make use of this available memory. In the
next section, we present a method to repair plans in which
we prevent loops by using a straightforward search, so we do
not need to keep track of an explicit history of refinements
and unrefinements.

⇒ ⇒

t

h1

...⇒

u

⇒ hn⇒

...
...

P

Figure 1: Sketch of the unrefinement heuristic. From the original planP on the left, we deriven subplans and calculate heuristic
values (h1, . . . , hn) using (in this case) a planning graph heuristic.

A Plan Repair Algorithm Using Refinement
Planners

In this section we present a method that can reuse an exist-
ing planningheuristic to incorporate plan repair in planners.
The planning heuristic that we use in our unrefinement strat-
egy is arbitrary, as long as it can evaluate partial plans for
their fitness (i.e. attach a value to a given partial plan indicat-
ing how close to a solution it is). In the resulting system, the
refinement and unrefinement strategies can coexist without
any problems, because the unrefinement heuristic makes use
of the refinement heuristic to calculate the heuristic values.
This means that using our method, we can add plan repair
capabilities to existing planners that use a suitable heuris-
tic. This has the additional benefit that our method can be
easily upgraded when more efficient planning heuristics are
devised.

Overview
Our approach to using existing planning heuristics for plan
repair is sketched in Figure 1. On the left-hand side, we have
the current planP that is to be unrefined. We compute a
number of plans that result fromremovingactions fromP.1

For each of these resulting plans, we use the chosen plan-
ning heuristic (for example, a planning graph heuristic) to
estimate the amount of work required to transform this plan
into a valid plan, i.e. for each of these plans a heuristic value
is calculated. The plan that has the best (lowest) heuristic
value is selected and the (refinement) planning heuristic is
used to complete this plan. If the planner cannot produce
a solution (which may happen because the heuristic is not
perfect), another unrefinement is chosen. Note that we only
apply the unrefinement step to the initial planP. We donot
unrefine partial plans that have been produced by the refine-
ment strategy, hence this method does not overly enlarge our
search space.

1Note that we consider only removing actions, and not other
constraints such as precedence or IPC constraints.

Figure 2: A backward removal tree (left) and a forward tree
(right).

Another way to look at this procedure is by considering
the search space that is traversed. Initially, the plan repair
method is given the current planP to adapt. It may very
well be that this plan is located in a part of the search space
in which it is very hard to find a solution by refinement
(i.e. only adding actions and constraints), if such a solution
exists at all. Our unrefinement heuristic calculates a num-
ber of plans by removing actions fromP, and uses a plan-
ning heuristic to evaluate the conditions of the search space
around these partial plans (i.e. it calculates a heuristic value
that tells something about the ease with which the plan can
be extended). Having identified a better location, we start
the refinement process from there. The steps of this proce-
dure are now discussed in greater detail.

Removal Trees
The first step is to decidewhichactions we consider for re-
moval (and thus, for which plans we would like to calcu-
late the heuristic value). Ideally, we would like to consider
all possible combinations of actions. However, there is an
exponential number of such combinations, so it is clearly
too much work to consider all of them. Therefore, we only
consider removing certain sets of actions, focusing on ac-
tions that are either depending on the initial state, or actions
that produce goals or unused positive effects. The idea is
that these actions are on the borders of the plan, and that

Figure 3: The merger of the trees of Figure 2.

by removing them, we shrink the plan from the outside in.
More specifically, we consider a dependency graph of all ac-
tions, i.e. we conceive a plan as a directed graph, in which
each node is an action, and edges connect actions when the
first action produces an effect that satisfies the precondition
of the second action (thus, edges represent causal links).
From this graph, we extract certain subgraphs, calledre-
moval trees. A removal tree can either beforwardsor back-
wards. A forward tree is rooted in an action depending on
the initial state; backward removal trees are rooted in an ac-
tion producing a goal, or of which the effects are not used
at all. Theheightof the tree determines which actions are
selected in the graph. The following rules determine the ac-
tions in a removal tree:

1. For an actiono, either depending on the initial state, or
producing a goal effect, the removal tree of height 1 con-
sists of the actiono itself.

2. For an actiono depending on the initial state, the removal
tree of heightn + 1 (n ≥ 1) of o is defined to be the
subgraph generated by the actions in the removal tree of
heightn, as well as the actions immediately depending on
these actions.

3. For actionso producing goal effects, the removal tree of
heightn + 1 (n ≥ 1) of o equals the subgraph generated
by the actions in the removal tree ofo of heightn, as well
as the actions that they immediately depend upon.

Figure 2 shows two examples of removal trees of three levels
(shown in grey). The removal tree at the top is rooted in an
action producing unused effects, hence this is a downward
tree, consisting of actions that the root (indirectly) depends
upon. The tree at the bottom is an upward removal tree,
containing actions depending upon the root action.

If we only considered the removal trees as unrefinements,
however, we would miss out on important unrefinements.
For example, we would never consider the whole plan to
be removed. Therefore, when we calculate the set of re-
moval trees of depthk, we merge the trees that have an over-
lap. That is, when we are about to consider removal trees
of depthk, we first calculate the set of removal trees, and
then merge any removal trees in the set that have an overlap.
We do this in such a way, that no two removal trees in the
resulting set overlap. Thus, if treesT1 andT2 overlap, and
so do treesT2 andT3, all three trees are merged into one tree
(actually, this is not a tree anymore, but a forest), consisting
of the actions inT1, T2 andT3. For example, consider Fig-
ure 3. This figure shows the result of merging the two trees

Algorithm 2 CALCULATE TREES(P,n)
Input: A plan P with initial action a0 and goal action a∞, and a
value n
Output: The set of removal trees of depth n
begin

1. numTrees = 0
2. for each action a in P do

2.1. if there exists a causal link a0
p
→ a then

2.1.1. numTrees = numTrees + 1
2.1.2. base1 = {a}
2.1.3. for j = 1 . . . n do

mark all actions in base j with “numTrees”

base j+1 = {a′ | ∃a′′
p′
→ a′ ∧ a′′ ∈ base j}

2.2. if there exists a causal link a
p
→ a∞

or no causal link a
p′
→ a′ exists then

2.2.1. numTrees = numTrees + 1
2.2.2. base1 = {a}
2.2.3. for j = 1 . . . n do

mark all actions in base j with “numTrees”

base j+1 = {a′ | ∃a′
p′
→ a′′ ∧ a′′ ∈ base j}

3. for j = 1 . . . numTrees do
3.1. create a set eq j = { j}

4. Eq =
⋃

j=1...numTrees eq j

5. for each action a in P with marks m1 . . .mn,n > 1 do
5.1. let Em j be the set containing m j, for j = 1 . . . n
5.2. let E′ = {m |m ∈ Em j , j = 1 . . . n}
5.3. Eq = Eq \

⋃
j=1...n Em j

5.4. Eq = Eq ∪ E′

6. for each eq j ∈ Eq do
6.1. let T j be the subplan generated by the actions marked
with the marks contained in eq j

7. return
⋃

j=1...|Eq| T j

end

shown in Figure 2.2

Computing Removal Trees
The set of removal trees can be calculated efficiently: there
is a polynomial number of removal trees given a certain
plan (with respect to the size of that plan), and these can
be merged in polynomial time. Algorithm 2 describes how
removal trees are calculated. Given a planP and a valuen,
it returns a set of merged removal trees of depthn. First,
it marks actions in the plan as being part of a removal tree.
In step 2.1, it calculates the upward removal trees for each
actiona that is causally dependent upon the initial state. It
does so by first marking the actiona itself, followed by the
actions that causally depend upona, the actions depending
upon those actions, etc., up ton times. The same procedure
(but then in the opposite direction) is followed for down-

2Notice that the two trees depicted in Figure 2 are not the only
trees of depth 3 in this plan. In fact, the set of merged removal
trees of depth 3 contains just one removal tree: the one equal to the
whole plan.

1 2 3

1,2 2,3

4 4

4

Figure 4: Example plan marked with removal trees labels.

ward trees, rooted in actions that produce goals, or actions
of which no effect is used at all. Having marked actions
for each removal tree, steps 3 through 5 determine which
removal trees are to be merged. The idea is to merge all
overlapping removal trees. This is done as follows: first, we
calculate a setEq consisting of singleton sets with the differ-
ent marks used. Then, in step 5 we successively merge sets
with marks that are overlapping. This results in a new set
Eq consisting of sets of marks of trees that are to be merged.
Finally, in step 6 we compute the removal trees by taking
subplans of the planP generated by the actions.3

Example.Consider the plan in Figure 4, consisting of 8 ac-
tions, depicted by boxes (of which the labels can be disre-
garded for now), and their causal dependencies (the arcs).
Three of those actions produce a goal effect, and one of is
causally dependent upon the initial state. Therefore, the set
of removal trees of depth one consists of 4 trees. We now
calculate the set if removal trees of depth 2, using Algo-
rithm 2. The first step is to mark the actions that are part of
each removal tree. This results in the markings as shown. A
label of “1, 2” means that this action is part of both the first
and the second removal tree.

To determine which trees are to be merged, we first cre-
ate the setEq = {{1}, {2}, {3}, {4}}. Then, we check which
actions are marked more than once. Say we first encounter
the action marked “1, 2”. This results in the sets{1} and{2}
being merged. Now,Eq = {{1, 2}, {3}, {4}}. Secondly (and
lastly), we encounter “2, 3”, which causes us to merge{1, 2}
(the set containing the label “2”) and {3}. This results in
Eq = {{1, 2, 3}, {4}}. Hence, there are two removal trees of
depth 2. One consists of each action marked with either 1, 2
or 3 and the other consists of actions marked with 4.

Selecting a Removal Tree
The set of merged trees is used to calculate possible unre-
finements to the plan. Given a (merged) removal tree, the
second step is to calculate the heuristic value for that option.
To do this, we construct the plan that results when remov-

3Note that for efficiency, steps 3 through 5 can be integrated
into steps 2.1 and 2.2.

Figure 5: Example cuts of a plan.

ing the removal tree. Next, we can simply apply a planning
heuristic to obtain a heuristic value for the plan. However,
some heuristics have a problem with calculating a heuris-
tic value for the kind of broken down plans we produce.4 To
overcome this problem, we automatically construct a special
domain on the fly. This domain consists of the original do-
main, as well as some special actions encoding the plan that
we would like to reuse. For this purpose, the plan is bro-
ken down into separate parts, calledcuts. Each cut is chosen
such that there are no two actions in a cut that were previ-
ously connected through one or more removed actions. For
each cut, an action is added which has preconditions and ef-
fects equal to the cut. Now, if we calculate a heuristic value
for the emptyplan in this custom domain, the computation
includes the “special” actions corresponding to the cuts, ef-
fectively producing a heuristic value for the plan from which
we constructed the domain. As an example, Figure 5 shows
the cuts of the plan that results from removing the removal
tree of Figure 2 (left).

The complete algorithm
The complete unrefinement strategy now works as follows:
upon detecting that our current planP is no longer a valid
solution to the problem at hand (e.g. when the problem has
changed), we begin by computing the removal trees ofP of
depth one. Overlapping removal trees are merged as dis-
cussed before, and for each merged removal tree the result-
ing plan is computed. For the resulting plans, we consult the
planning heuristic to obtain an estimate of the cost of extend-
ing the plan to a valid plan. Thus, the planning heuristic is
used to select the most promising candidate (if such a candi-
date exists). This candidate is then passed to the refinement
strategy in order to be completed. If this is not possible, the
other candidates are tried, until all candidates of this level
have been removed. If that happens (or no candidate ex-
ists at all), we iteratively increment the depth of the removal
trees and try again. This procedure is repeated, until, finally,
the whole plan is discarded and a complete replanning is
performed.

4For example, forward heuristics (such as used in e.g.FF (Hoff-
mann & Nebel 2001)) expect that the partial plan forms the head
of the final plan to be calculated. This means that they assume that
actions have to be addedafter all existing actions. In other words,
it is not allowed to have actions in the partial plan which do not
have their preconditions satisfied. Our heuristic regularly produces
partial plans in which this is the case.

Algorithm 3 REPAIR (P,Π,H)
Input: A partial plan P, a problem Π and a historyH
Output: A solution to Π or ‘fail’

begin
1. if candidates(P) is empty then

1.1. return fail.
2. if solution(P,Π) returns a solution ∆ then

2.1. return ∆.
3. if weH ≥ 0 then

3.1. T =CALCULATE TREES(P,H)
3.2. P′ = {P − Ti |Ti ∈ T}

4. else
4.1. generate new plan set P′ = R(P).

5. Use the planning heuristic to select the components Pi ∈ P

in a particular order and call REPAIR(Pi,Π,−1).
6. if 0 ≤ H < |P| then

6.1. REPAIR(Pi,Π,H + 1).
end

In Algorithm 3 the procedure described above is cast in
the template algorithm as shown in Algorithm 1. Here, we
use the historyH to distinguish between the refinement
phase and the unrefinement phase of the search. Like the
template algorithm, there are three parameters: a planP to
refine or unrefine, the current problemΠ and the history
H , which we assume to be0 when this function is initially
called. The first two steps are identical to the steps of the
template. In line 3, we decide to refine or unrefine based on
the value ofH . If H ≥ 0, we calculate the removal trees
of depthH and generate the plan setP′ containing all plans
that result from removing a removal tree from the planP. In
the case thatH < 0, we apply the chosen refinement strat-
egy to generate further refinements. The non-deterministic
selection of components of the new plan setP′ is replaced
by a more informed selection based on the planning heuris-
tic. Thus, we enter recursion with the most promising com-
ponents first. Note that in step 5, we always recurse with
a negative value for the history. Hence, we will only select
the refinement strategy in subsequent iterations of the algo-
rithm. Finally, if we generated a set of unrefinements in this
iteration and none of the recursive calls of step 5 produced
a solution, we try to derive a solution using larger removal
trees in step 6: unless we arrived at the maximum size of the
removal trees (equal to the size ofP), we call theREPAIR
algorithm with the value ofH increased by one.

Experimental Results
For the experimental validation of our technique, we in-
tegrated it into theVHPOP planner (Younes & Simmons
2003).5 This planner was chosen since it is a clear refine-
ment planner, that sticks close to the original template al-

5That is, we used the refinement algorithm ofVHPOP as the
refinement operatorR of step 4.1 of Algorithm 3, and theVHPOP
heuristic to determine the order in which to try the components of
P in step 5.

gorithm. This makes it easier to add our extensions.6 Ex-
periments were performed using the benchmark problem set
of GPG (Gerevini & Serina 2000). This benchmark set is
already a few years old, but is the only one for plan repair
problems that the authors are aware of. It consists of over
250 replanning problems from various often used planning
domains:gripper, logisticsand rocket. The problems can
be divided into 7 sets (2 each for the gripper and rocket do-
mains, and 3 for logistics). Each set contains variants on
the same test problem, each with a few changes to the initial
state or the goals. For example, the gripper domain features
a robot equipped with two grippers. It can move through a
number of rooms, and has to move balls from their current
location to another. Examples of modifications in this do-
main are: “ball 2 is located in room B instead of in room A”,
or “ball 5 should no longer be brought to A, but to C”.

In our experiments, we compared our system (which we
call POPR, for Partial Order Plan Repair) with that ofGPG
(of which a description can be found in the next section), as
we used their benchmark set, and with planning from scratch
usingVHPOP. Figures 6 to 10 show the run times that were
obtained using a Pentium-III running at 1000 MHz. The
systems were allowed a maximum of 512 Mb of memory,
and 200 seconds of CPU time. All graphs use a logarithmic
scale for the CPU times. Note, however, that the graphs do
not all have the same scale. Three run times are plotted: one
for planning from scratch (usingVHPOP, labeledscratchin
the graph), one forPOPR, our version ofVHPOP using the
proposed plan repair method (labeled POPR) and one for the
GPG plan adaptation system (labeled GPG). For brevity, the
results of thegripper domain are all displayed in one graph;
instances 1-30 come from one test set, problems 31-60 come
from the other. The same holds for therocketdomain.

In general, the results of Figures 6 to 10 show that our plan
adaptation system is faster than a complete replanning in all
but a few cases. This is especially apparent in the gripper do-
main, whereVHPOP cannot find a solution at all within the
time and space limits for certain instances (those reported
as 200 seconds in the figure). But also in most of the other
domains, the difference is quite clear. The reason for this
is that the planning problems that are given toVHPOP af-
ter the unrefinement phase are usually much smaller than
the complete problem. For some problem instances, how-
ever, the instances are such that theVHPOP heuristics lead
in the wrong direction when refining a plan that it has re-
ceived from the unrefinement heuristic. For example, prob-
lem 28 of Logistics-A requires backtracking a total of 45
times when planning from scratch, compared to 228 times
when performing plan repair.

We shall not discuss the specifics of each of the domains,
but limit ourselves to a few observations. Firstly, we point
at the oscillating behaviour of our system in the “Rocket”
domain. This is caused by the specification changes: for
example, for some changes, a passenger is merely required

6As an indication of how hard (or easy) it is to adapt an exist-
ing planner using this template, we observe that the source code
of VHPOP consists of 21,080 lines of code, whereas the adapted
system consists of 23,757 lines (and only a few existing lines have
been changed or removed).

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50 55 60
instance (Gripper-10/12)

time (ms, logarithmic)

POPR
scratch

GPG

Figure 6: This figure shows the run time in CPU millisec-
onds (on a logarithmic scale) required byVHPOP from
scratch,VHPOP using plan repair, andGPG for the GPG
benchmark “Gripper”.

Problem set POPR GPG F p
Gripper-10/12 55.7 175.8 19.8 < 0.001
Rocket-A/B 132.9 64.3 10.3 < 0.002
Logistics-A 78.1 182.4 50.9 < 0.001
Logistics-B 70 178.8 45.6 < 0.001
Logistics-C 89.5 357.3 9.9 < 0.002

Table 1: Means ofPOPR andGPG and results of an anal-
ysis of variance of the experiments for the different problem
sets

to board another rocket (that was flying anyway), whereas
for other changes a rocket has to be flown to that person
first. In the former case only a small repair is required; in
the latter case a larger repair is required. However, while we
can attribute the behaviour to the specific instances, we are
not entirely sure yet why this has such a big effect in this
domain. Surely, the same situation is present in the other
domains, but there it does not lead to such big fluctuations.

Another interesting observation can be made in the “Lo-
gistics” domains. It can best be seen in Figure 8, but also
occurs in Figures 9 and 10. For about the first 20 problem
instances, our method performs quite a lot better than it does
on the latter 25 problems. ForGPG we can see the con-
verse:GPG is slower on those first 20 instances than it is
on the others. Again, this can be explained from the specific
instances. In those first 20 problems, we have a number of
additional packages that have to be transported. In our sys-
tem, that means that all of the plan can remain intact, and
a small planning problem is to be solved to reach the ad-
ditional goals. Due to the intricacies ofGPG, however, it
removes quite a few actions from the plan before it is ex-
tended.

When we compare the results of the two replanning sys-

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50 55 60
instance (Rocket-A/B)

time (ms, logarithmic)

POPR
scratch

GPG

Figure 7: The run time for “Rocket”

1

10

100

5 10 15 20 25 30 35 40 45
instance (Logistics-A)

time (ms, logarithmic)

POPR
scratch
GPG

Figure 8: The run time for “Logistics-A”

tems,POPR and GPG, at a higher level, the differences
are not directly clear from the graphs. However, Table 1
shows the means for the different problem sets, and the re-
sults of the analysis of variance (ANOVA). From these re-
sults it can be seen that the distinction between the two ap-
proaches is quite clear. We see that our plan repair method
outperformsGPG in all domains except for the Rocket do-
main, where it is much slower in about half of the cases,
resulting in a higher average of run time. We intend to per-
form a more thorough analysis of the results, based on the
statistical methods discussed by Long and Fox (2003), in the
near future.

The quality of the plans, when measured in number of ac-
tions, is slightly less when using plan repair. The reason for
this is that it is sometimes easier to repair a plan without first
removing redundant actions in the unrefinement phase, than

1

10

100

5 10 15 20 25 30 35 40 45
instance (Logistics-B)

time (ms, logarithmic)

POPR
scratch
GPG

Figure 9: The run time for “Logistics-B”

1

10

100

1000

5 10 15 20 25 30 35 40 45
instance (Logistics-C)

time (ms, logarithmic)

POPR
scratch
GPG

Figure 10: The run time for “Logistics-C”

it is to repair a plan that has redundant actions removed. The
(estimated) ease with which a plan can be extended is used
when deciding which plan to hand over to the refinement
phase. Therefore, sometimes a quicker solution using more
actions is chosen. This behaviour can for example be seen
in the gripper domain: suppose that a ball has to be moved
from location A to location C instead of to location B (a
change in goals). When the robot ends it plan in location
B, three actions are required to repair the plan:pickup the
ball in B, move to C anddrop the ball there. This requires a
total of six actions to bring the ball to its final location: three
to bring the ball to B (its original destination), and another
three to bring it to C. Now, suppose that we would first unre-
fine the plan, and remove the three actions that bring the ball
to B. This requires four actions to repair the plan:move to
A, pickup the ball there,move to C anddrop it. Therefore,

0

10

20

30

40

50

60

5 10 15 20 25 30

nu
m

be
r

of
st

ep
s

instance (Gripper-10)

POPR
scratch
GPG

Figure 11: Size of the plans produced by planning from
scratch and by using plan repair.

when this option is considered, it is deemed less favourable
than the first option, since the resulting planning problem
is estimated to be harder. Figure 11 shows the size of the
resulting plans for the gripper domain. As we can see, the
repaired plans are slightly larger than the plans computed
from scratch. (Note thatVHPOP cannot find a solution for
instances 13 and 14, which is why they are missing.)

Related Plan Repair Methods
The idea of reusing an existing plan instead of planning from
scratch is not novel. In this section, we discuss a number of
existing approaches. First, some are based on Graphplan,
like GPG (Gerevini & Serina 2000).SPA (Hanks & Weld
1995) uses a kind of local search starting with the original
plan. Third, we found one that uses the structure of hierar-
chical task networks (HTN) to determine which actions to
remove from a failed plan, calledReplan (Boella & Dami-
ano 2002). Furthermore, there are two methods that use plan
repair rules:Chef (Hammond 1990), andO-Plan (Drab-
ble, Dalton, & Tate 1997). Finally, we also found a cou-
ple of plan repair methods that rely not so much on classi-
cal AI planning techniques, but use somewhat more unre-
lated techniques, such as LPA* path planning bySherpa
(Koenig, Likhachev, & Furcy 2002), and a proof system by
MRL (Koehler 1994). We shortly discuss each of these ap-
proaches and relate them to our plan repair template.

We first look atGPG, which we used as a comparison in
our experimental results. It uses an approach based on the
Graphplan planner (Blum & Furst 1997). Once a plan is be-
comes invalid,GPG checks where inconsistencies occur in
the plan. The plan is then divided into three parts: thehead
of the plan that consists of actions that can all be executed
from the initial state, a middle part consisting of all incon-
sistent actions and the actions between, and atail that can be
used to attain the goals once the inconsistencies have been
solved. These three parts can be identified using the plan-
ning graph that was constructed during the planning phase.

The middle part is then discarded (unrefinement, step 3.1)
and a plan is sought to bridge the gap that exists between
the head and the tail of the plan (refinement, step 4.1). If
such a plan cannot be found, the gap is enlarged and the pro-
cess repeats. Eventually, all of the plan will be discarded, in
which case a completely new plan is constructed (if possi-
ble). This system does not explicitly make use of a history.
Instead, it unrefines only the initial plan, and never any of
the plans produced by a refinement step. This can be seen as
an implicit memory.

TheSPA planner (Hanks & Weld 1995) is another exam-
ple showing the two parts of plan repair. It selects the next
partial plan to work on (step 5) using a queue (implement-
ing a breadth-first search in the space of plans). The partial
plans on this queue are either to be refined (denoted by↓),
or to be unrefined (denoted by↑). Either step 3.1 or 4.1 is
chosen accordingly. For a partial plan tagged with↓ we de-
rive all refinements, and add those to the queue. For a partial
planP tagged with a↑, one decision made during planning
is reversed (unrefinement), and next not only the resulting
plan P′ is added to the queue (again with a↑), but also the
refinements of this planP′ are added (with a↓), except for
the planP. Tagging the plans in the queue with either↑ or ↓
ensures that the same node in the search space is not visited
twice, hence it can be considered a form of memory.

The Replan (Boella & Damiano 2002) model of plans
is similar to the plans used in the hierarchical task network
(HTN) formalism (Erol, Hendler, & Nau 1994). A task net-
work is a description of a possible way to fulfill a task by
doing some subtasks, or, eventually (primitive) actions. For
each task at least one such a task network exists. A plan is
created by choosing the right task networks for each chosen
(abstract) task, until each network consists of only (prim-
itive) actions. Throughout this planning process,Replan
constructs aderivation treethat includes all chosen tasks,
and shows how a plan has been derived.

Plan repair withinReplan is calledpartialisation. For
each invalidated leave node of the derivation tree, the (small-
est) subtree that contains this node is removed (unrefine-
ment, step 3.1 of Algorithm 1). Initially, such an invalid
leave node is a primitive action, and the root of correspond-
ing subtree is the task which network contained this action.
Subsequently, a new refinement is generated for this task
(step 4.1). If the refinement fails, a new round is started in
which subtrees for tasks higher in the hierarchy are removed
and regenerated. In the worst case, this process continues
until the whole derivation tree is discarded. LikeGPG, Re-
plan never unrefines a plan produced by a refinement step,
except for the initial plan. Again, this can be seen as implic-
itly using a memory.

Case-based planners have long since employed plan re-
pair strategies to adapt their plans to new situations. One
of the first approaches to the plan repair problem in case-
based planning was theChef system by Hammond (1990),
a domain specific planning system for cooking. TheChef
system is equipped with a a set ofplan repair rules. Each
such rule describes how a specific failure can be repaired.
WhenChef encounters a failure, it builds an explanation of

why the failure has occurred. This explanation includes a
description of the steps and states leading towards the fail-
ure as well as the goals that these steps tried to realise. Based
on the explanation, a set of plan repair strategies are selected
and instantiated to the specific situation of the failure. Af-
ter choosing the best of these instantiated repair strategies,
Chef implements it. Note that such a repair strategy consists
of the specific refinements and unrefinements that have to be
performed.

The strategy of using plan repair rules is also followed by
O-Plan (Drabble, Dalton, & Tate 1997). However, there is
no such thing as an explanation of a failure. During exe-
cution, the system confirms the effects of every action. For
each failing effect that is necessary for some other action to
execute, additional actions, in the form of a repair plan, are
added to the plan. These repair plans are prebuilt plans that
can repair certain failure conditions. For example, the re-
pair plans may include a plan for changing a flat tyre, or for
replacing a broken engine. Whenever an erroneous condi-
tion is encountered, the execution of the plan is stopped and
a repair plan is inserted and executed. After completion of
the repair plan, execution of the regular plan resumes again.
O-Plan does onlyaddactions to repair failures. Therefore,
it does neither employ unrefinements nor does it require a
history. It is therefore alsoincomplete: not all failures can
be recovered from. Wang and Chien (1997) describe how
search can be added toO-Plan, to try and recover from fail-
ures for which no prebuilt repair strategy is available. How-
ever, they too do not consider removing actions from a plan
to recover from failures, but merely find out which actions
they have to re-execute.

Another case-based system isMRL (Koehler 1994), based
on a proof system. Upon retrieving a plan from the library
that is to be adapted to the new situation, it tries to use
the retrieved plan as a “proof” to establish the goal condi-
tions from the initial state. If this succeeds, the plan can
be used without alteration. In the other case, it results in
a failed proof from which refitting information can be ex-
tracted. Based on the failed proof, a plan skeleton is con-
structed by using amodification strategy(Koehler’s term for
an unrefinement strategy). This strategy uses the failed proof
to derive which parts of the proof (i.e. the plan) are use-
ful, and which are not. Then, the useless parts are removed.
Having computed this skeleton, a proof system is used as a
refinement strategy to fill in the gaps.

Finally, we mention theSherpa replanner (Koenig,
Likhachev, & Furcy 2002). In contrast to the previous sys-
tems,Sherpa applies the unrefinement step only once. It
uses theLPA* algorithm, which was actually designed for
pathplan repair, to back-track to a partial plan that has the
same heuristic value as before the unexpected changes in
the world. From there on only refinement steps are used
(i.e. normal planning). Because of the unrefinement strategy
and the single application thereof,Sherpa does not work on
all plan repair problems, but only on problems in which ac-
tions have been removed from the domain description. The
unrefinement step then simply consists of removing those
actions that are no longer available.

From this short overview it becomes clear that existing
systems for plan repair also distinguish between a refine-
ment and an unrefinement phase, although this is not always
shown explicitly. We therefore conclude that the plan repair
template is indeed general enough to describe most plan re-
pair systems.

Discussion
This paper started with two important observations. First,
we really need plan repair methods that start with the orig-
inal plan. The reason is not only because we believe that
this is often more efficient in practice, but also because an
agent may have made bookings and commitments to oth-
ers which may be costly to undo. Second, existing planning
techniques are more advanced than existing plan repair tech-
niques. Therefore, we would benefit from a straightforward
method to use planning techniques for plan repair.

The main message of this paper is good news: planning
techniques require only a relatively simple extension to be
able to do plan repair as well. We showed how this can be
done, using a plan repair template that describes two dif-
ferent operations required for repairing a plan: (i) removing
actions that are in the way of attaining a goal, and (ii) adding
actions required for attaining goals. Adding actions is sim-
ilar to planning, but, surprisingly, as we have showed for
VHPOP, planning heuristics can also be used for removing
actions!

Furthermore, we have shown that

• the plan repair template is general enough to explain most
existing plan repair approaches, and that

• the plan repair template is useful for devising a new unre-
finement heuristic based on existing planning heuristics,
and that

• POPR, an implementation of this heuristic on top ofVH-
POP , performs slightly better thanGPG, and that

• plan repair in practice is much better than planning from
scratch in spite of the theoretical result by Nebel and
Koehler (1995).

We believe that this (template) view on plan repair methods
will help in designing even faster and more powerful ones,
and specifically in using advanced planning techniques for
plan repair. Besides the current strategy that focuses on ac-
tion deletion, other types of unrefinement strategies might
be developed, for example the removal of causal links or the
relaxation of (timing) variables.

Currently, we are applying the presented plan repair tech-
nique in multi-agent systems. Suppose a situation where an
agent asks help from others, because it is not able to com-
plete its plan on its own. When another agent agrees, both
agents have to “repair” their plans: the requesting agent
needs to include the effects of the supplying agent, and
the supplying agent needs to add actions for this additional
(sub)goal. This is one additional example that shows the im-
portance of plan repair. Finally, we also try to improve upon
the results of our heuristic by studying the behaviour in the
“Rocket” domain and by doing a more thorough analysis of
the results.

Acknowledgements
The authors would like to thank Ivan Serina for putting his
benchmark set and theGPG planning system at our dis-
posal, as well as for his comments on an earlier version of
this paper. We are also grateful for the helpful comments of
the reviewers.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through plan-
ning graph analysis.Artificial Intelligence90:281–300.
Boella, G., and Damiano, R. 2002. A replanning algorithm
for a reactive agent architecture. InArtificial Intelligence:
Methodology, Systems, and Applications (LLNCS 2443), 183–
192. Springer Verlag.
Drabble, B.; Dalton, J.; and Tate, A. 1997. Repairing plans on the
fly. In Proc. of the NASA Workshop on Planning and Scheduling
for Space, Oxnard, CA.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Semantics for hier-
archical task network planning. Technical Report CS-TR-3239,
UMIACS-TR-94-31, Computer Science, University of Maryland.
Gerevini, A., and Serina, I. 2000. Fast plan adaptation through
planning graphs: Local and systematic search techniques. In
Proc. of the Fifth Int. Conf. on AI Planning Systems (AIPS-00),
112–121. Menlo Park, CA: AAAI Press.
Glover, F., and Laguna, M. 1993. Tabu search. InModern Heuris-
tic Techniques for Combinatorial Problems. Scientific Publica-
tions, Oxford.
Hammond, K. J. 1990. Explaining and repairing plans that fail.
Artificial Intelligence45:173–228.
Hanks, S., and Weld, D. 1995. A domain-independent algorithm
for plan adaptation.Journal of AI Research2:319–360.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search.Journal of AI Research
14:253–302.
Kambhampati, S.; Knoblock, C. A.; and Yang, Q. 1995. Planning
as refinement search: A unified framework for evaluating design
tradeoffs in partial-order planning.Artificial Intelligence76(1-
2):167–238.
Kambhampati, S. 1997. Refinement planning as a unifying frame-
work for plan synthesis.AI Magazine18(2):67–97.
Koehler, J. 1994. Flexible plan reuse in a formal framework.
In Proc. of the 2nd European Workshop on Planning (EWSP-93),
171–184. Vadstena, Sweden: IOS Press.
Koenig, S.; Likhachev, M.; and Furcy, D. 2002. Lifelong planning
A*. Technical Report GIT-COGSCI-2002/2, Georgia Institute of
Technology, Atlanta, Georgia.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis.JAIR20:1–59.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan gener-
ation: a complexity-theoretic perspective.Artificial Intelligence
76:427–454.
van der Krogt, R.; de Weerdt, M.; and Witteveen, C. 2003. A
resource based framework for planning and replanning.Web In-
telligence and Agent Systems1(3/4):173–186.
Wang, X., and Chien, S. 1997. Replanning using hierarchical
task network and operator-based planning. Technical report, Jet
Propulsion Laboratory Nasa.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Versatile
heuristic partial order planner.JAIR20:405–430.

