
Almost Square Packing

Helmut Simonis and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.simonis|b.osullivan}@4c.ucc.ie

Abstract. The almost square rectangle packing problem involves pack-
ing all rectangles with sizes 1 × 2 to n × (n + 1) (almost squares) into
an enclosing rectangle with minimal area. This extends the previously
studied square packing problem by adding an additional degree of free-
dom for each rectangle, deciding in which orientation the item should
be packed. We show how to extend the model and search strategy that
worked well for square packing to solve the new problem. Some adapted
versions of known redundant constraints improve overall search times.
Based on a visualization of the search tree, we derive a decomposition
method which initially only looks at the subproblem given by one of the
cumulative constraints. This decomposition leads to further modest im-
provements of execution times. We find a solution for problem size 26
for the first time and dramatically improve best known times for finding
solutions for smaller problem sizes by up to three orders of magnitude.

1 Introduction

The almost square rectangle packing problem [9, 12, 13] involves packing all rect-
angles with sizes 1 × 2 to n × (n + 1) into an enclosing rectangle of minimum
area. The orientation of the rectangles can be freely chosen, adding an addi-
tional degree of freedom compared to the previously studied square packing
problem [8, 10, 11, 15, 18]. General rectangle packing is an important problem in
a variety of real-world settings. For example, in electronic design automation,
the packing of blocks into a circuit layout is essentially a rectangle packing prob-
lem [14, 16]. Rectangle packing problems are also motivated by applications in
scheduling [10, 11, 15]. Rectangle packing is an important application domain
for constraint programming, with significant research into improved constraint
propagation methods reported in the literature [1–7, 19].

2 Constraint Programming Model

We initially use the established constraint model [2, 6, 18] for the rectangle pack-
ing problem. Each item to be placed is defined by domain variables X and Y
for the origin in the x and y dimension respectively, and two domain variables
W and H for the width and the height of the rectangle, respectively. In the
particular case of packing almost squares, W and H can take only two possible

values (n and n + 1), and must be different from each other. The constraints
are expressed by a non-overlapping constraint in two dimensions and two (re-
dundant) Cumulative constraints that work on the projection of the packing
problem in x or y direction. This is illustrated by Figure 1. We use SICStus Pro-
log 4.0.4 (on a 3GHz Intel Xeon 5450 with 3.25GB of memory), which provides
both Cumulative [1] and Disjoint2 [3] constraints.

disjoint2

cumulative

cumulative

X,Y

W

H

Width

Height

Fig. 1. The basic constraint programming model.

2.1 Generating Candidate Enclosing Rectangles

To find the enclosing rectangle with smallest area, we need a decomposition
strategy that generates sub-problems with fixed enclosing rectangle sizes. We
enumerate on demand all pairs Width, Height in order of increasing area Width×
Height that satisfy

[Width, Height] :: n..∞, Width ≥ Height

n∑
i=1

i× (i + 1) ≤ Width ∗ Height

k =

⌊
Height + 1

2

⌋
, Width ≥

n∑
j=k

j (1)

Equation 1 provides a simple bound on the required area, considering all
large items that cannot be stacked on top of each other, which, thus, must
fit horizontally. For candidates with the same area, we try them by increasing

Height, i.e. for two subproblems with the same surface we try the “less square-
like” solution first. We then solve the rectangle packing problem for each such
candidate enclosing rectangle in turn, until we find the first feasible solution.
By construction, this is an optimal solution. The number of candidates seems
to grow linearly with the amount of slack allowed. In difference to the square
packing problem, we find that the optimal solution in many cases does not use
any slack at all, and the number of candidates to be tested remains quite small.

2.2 Symmetry Removal

The model so far contains a number of symmetries, which we need to remove
as we may have to explore the complete search space. We restrict the domain of
the largest square of size n × (n + 1) to be placed in an enclosing rectangle of
size Width × Height to

X :: 1..1 +

⌊
Width− n

2

⌋
, Y :: 1..1 +

⌊
Height− n

2

⌋
.

Other symmetries are discussed below, but are not yet handled as part of the
constraint model.

3 Search

We studied a number of different search strategies for square packing in [18].
The best method found used an interval labeling approach, first assigning the X
variables to intervals, small enough to create obligatory parts, then fixing the X
variables to values, and then repeating the process for the Y variables. For the
problem sizes studied (up to 27) this provided the best solutions, when fixing
the interval size to a fraction between 0.2 and 0.3 of the square width.

In the almost square packing problem, we have to assign W and H variables
in addition to the X and Y variables. As the W and H variables of one rectangle
are linked by a disequality, and can only take two possible values, it is enough
to assign W , this will force the assignment of the H variable.

When should we assign the W variables in the search process? We have
studied three cases:

eager Assign all W variables before assigning any X variables, leading to mul-
tiple problems with oriented rectangles

lazy Assign the W variables once all X variables have been assigned to intervals,
but before assigning fixed values for X

mixed For each rectangle, ordered by decreasing size, first assign the W vari-
able, then fix the X variable to an interval. Repeat this process for all rect-
angles, before assigning the X variables to values.

Not surprisingly, the mixed method clearly outperforms the two other methods.
In Figures 2, 3, and 4 we show the node distribution of the search for the first

solution, considering problem size 17. The display shows the number of TRY
and FAIL nodes at each level of the search tree. A TRY node is generated, when
we try to assign an interval or value to a variable and the resulting propagation
succeeds. A FAIL node is generated when the assignment leads to a failure and
backtracking. The displays are generated with CP-Viz [17], a generic visualiza-
tion tool for finite domain constraint solvers.

Fig. 2. Eager Orientation (N=17)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

FAIL
TRY

For the eager method (Figure 2) we see that failures only start once we
begin to assign the X variables to intervals. The initial fixing of the rectangle
orientation leads to an exponential growth of the search tree (straight line on
the left side of the graph due to the log-scale), peaking at over a million nodes
at level 23. Note that after the assignment of the X variables only 20 possible
solutions remain. Starting with the assignment of the Y variables, the search
tree expands again, but only to a few hundred nodes.

For the lazy method (Figure 3), the overall structure of the graph is similar,
although the maximal width of the search tree (again, over a million nodes) is
reached earlier, at the end of the X variable interval assignment. Forcing the
orientation of the rectangles then leads to a rapid elimination of candidate so-
lutions. Although failures occur earlier in the search, the propagation is not
powerful enough to eliminate unfeasible candidates without knowing the orien-
tation of the rectangles.

In the mixed method (Figure 4), the propagation can eliminate more partial
assignments early in the search, so that the maximal width of the tree is around
20000 nodes. Figure 5 compares the three methods considering only the TRY

Fig. 3. Lazy Orientation (N=17)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

FAIL
TRY

Fig. 4. Interleaved Orientation (N=17)

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

FAIL
TRY

nodes. We see that the search for the last X variable assignments and for finding
the Y variables is quite similar, but that the mixed method clearly outperforms
the two other methods early in the search.

Fig. 5. Assignment Strategies Compared (N=17)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

Eager
Lazy

Interleaved

The overall structure of the search tree is remarkably similar for most problem
sizes, Figure 6 shows the node distribution for problem size 20. An exception is
problem size 21, shown in Figure 7. This shows the node distribution for the 46×
77 candidate rectangle with no slack. Even after the orientation and X interval
assignment of all rectangles a large number of partial assignments remains, which
are only reduced by the assignment of the X variables to particular values. But
there is no solution to this problem, therefore all possible assignments must be
enumerated.

The optimal solution for size 26 is shown in Figure 8. This result has not been
previously published. Previous work [12] only obtained solutions for problem
sizes up to 25.

The results for the basic model are shown in Table 1. It shows the problem
size N , the total Surface of the rectangles to be placed, the number of candidate
enclosing rectangles studied (K), the Width and Height of the optimal enclosing
rectangle, its Area and the amount of lost space (Lost). It then counts the
number of backtracking steps and the time required to find the first solution,
the total number of solutions for the given enclosing rectangle, and the number
of backtracking steps and time required to enumerate all such solutions. Note
that the total number of all optimal solutions can be higher, as there can be

Fig. 6. Node Distribution (N=20)

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

N
od

es

Depth

20_35_88

W and X Interval X Assignment Y Interval Y AssignmentFAIL
TRY

Fig. 7. Infeasible Problem Instance (N=21)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70

N
od

es

Depth

21_46_77

"flat_21_46_77.dat"

2
7
x
2
6

2
5
x
2
6

2
4
x
2
5

2
3
x
2
4

2
3
x
2
2

2
2
x
2
1

2
0
x
2
1

1
9
x
2
0

1
9
x
1
8

1
8
x
1
7

1
7
x
1
6

1
5
x
1
6

1
5
x
1
4

1
4
x
1
3

1
2
x
1
3

1
1
x
1
2

1
0
x
1
1

1
0
x
9

9
x
8

7
x
8 6
x
7

5
x
6

4
x
5

3
x
4 2
x
3

2
x
1

Fig. 8. Optimal Solution Size 26; The X axis is along the shorter side

candidate rectangles with the same optimal area which are not explored by our
algorithm, which stopes at the first feasible candidate.

The total number of solutions varies widely with the problem size. For the
problem sizes (6, 9, 10, 12, 21) where the optimal solution is not perfect (i.e.
requiring some slack), the number of solutions increases as the 1×2 rectangle
can be placed in many of the empty spaces.

In general, if a solution contains two (consecutive) rectangles which share a
common edge, then we can exchange these rectangles creating a new solution.
In Figure 8 for example, the rectangles 22× 21 and 20× 21 (on the left) can be
exchanged. Indeed, in Figure 8 there are 5 such pairs of rectangles, which can
be flipped independently, leading to 32 symmetrical solutions.

3.1 Redundant Constraints

We described in [18] two methods which were quite effective in reducing problem
complexity.

– The first was to ignore the 1×1 square when setting up the constraints, while
still reserving space for it in the enclosing rectangle. This both reduced the
amount of unnecessary work inside the constraints dealing with this small
square, and avoided symmetries in the search when the 1 × 1 square was
placed in all possible empty places.

– The second idea was to eliminate certain X and Y values, when squares were
placed close to the border of the enclosing space. If a large object is placed
near a border, then it might be impossible to fill the gap between the border
and the object with the few available, smaller items and the slack allowed
(empty space). These gap limits can be precomputed and domain values can
be removed a priori, reducing the search space.

For the almost square packing problem, the smallest item is the 1× 2 rectangle.
If we remove it from the problem, we might find an infeasible solution, if an
assignment exists where all empty space is allocated to non-connected 1 × 1
pieces. Fortunately, that situation rarely occurs; Figure 9 shows a case for size
16. We correct this by enforcing an additional non-overlapping constraint at the

Table 1. Basic Model Results

First Solution All Solutions
N Surface K Width Height Area Loss Back Time Sols Back Time

4 40 1 4 10 40 0.00 2 00:00 8 6 00:00

5 70 1 5 14 70 0.00 4 00:00 16 14 00:00

6 112 3 6 19 114 1.79 16 00:00 216 24 00:00

7 168 3 12 14 168 0.00 19 00:00 65 76 00:00

8 240 4 15 16 240 0.00 6 00:00 12 83 00:00

9 330 6 14 24 336 1.82 54 00:00 9170 3137 00:00

10 440 6 17 26 442 0.45 323 00:00 1854 1379 00:00

11 572 3 22 26 572 0.00 99 00:00 4 268 00:00

12 728 8 21 35 735 0.96 546 00:00 25180 13795 00:02

13 910 3 26 35 910 0.00 1900 00:00 42 6197 00:00

14 1120 4 28 40 1120 0.00 2937 00:00 4 9604 00:00

15 1360 4 34 40 1360 0.00 14440 00:00 4 50592 00:03

16 1632 4 32 51 1632 0.00 15967 00:01 544 48711 00:03

17 1938 3 34 57 1938 0.00 210878 00:14 16 398759 00:27

18 2280 4 30 76 2280 0.00 9734 00:00 110288 152032 00:24

19 2660 4 35 76 2660 0.00 102235 00:08 526 3240741 04:26

20 3080 4 35 88 3080 0.00 351659 00:34 1988 3612859 05:52

21 3542 5 39 91 3549 0.20 14036353 21:38 3250117 720146935 25:13:20

22 4048 3 44 92 4048 0.00 58206362 01:37:30 688 122563947 03:23:19

23 4600 3 40 115 4600 0.00 14490682 30:12 6784 136039535 04:38:40

24 5200 3 40 130 5200 0.00 27475258 55:05 96 99731414 03:20:37

25 5850 5 45 130 5850 0.00 35282646 01:23:12

26 6552 5 42 156 6552 0.00 92228265 03:28:20

end of the search, where we add the 1 × 2 piece back to the problem. If there
is no room to place that item, the constraint will fail and we backtrack to find
another candidate for the relaxed problem, until a valid solution is generated.

Fig. 9. Pseudo Solution N=16 Width=32 Height=51 with 1 × 2 item removed; This
can not be extended to a complete solution

16x17 16x15

15x14

14x13

13x12

12x11

10x11

10x9 8x9

7x8

7x6

6x5

4x5

4x32x3

The precomputation of infeasible gap values can also be done for the almost
square case, although the domain restrictions are somewhat weaker.

The effect of the redundant constraints are shown in Table 2. Ignoring the
1× 2 rectangle leads to a small, but consistent improvement (Not One Column)
compared to the Basic Model. Removing values close to the border of the place-
ment area (Gap Column) has a more significant effect, while combining both
leads to the best results.

3.2 Impact of Interval Size

In [18], we also studied the impact of the chosen interval size on the performance
of the algorithm. We repeated these tests for the almost square packing problem,
which lead to a similar conclusion. Setting the interval to 0.3 times the size of
the item leads to the best performance, both in number of search nodes and
execution time. As Figure 10 shows, the effect is rather restricted, with an an
obvious effect only visible for problem size 21, which is the only large instance
which requires some slack.

Table 2. Redundant Constraint Model Results

Basic Model Not One Gap Both
N Back Time Back Time Back Time Back Time

4 2 00:00 2 00:00 2 00:00 2 00:00

5 4 00:00 3 00:00 2 00:00 1 00:00

6 16 00:00 16 00:00 6 00:00 6 00:00

7 19 00:00 18 00:00 10 00:00 9 00:00

8 6 00:00 5 00:00 17 00:00 10 00:00

9 54 00:00 54 00:00 27 00:00 27 00:00

10 323 00:00 323 00:00 159 00:00 159 00:00

11 99 00:00 99 00:00 54 00:00 54 00:00

12 546 00:00 546 00:00 274 00:00 274 00:00

13 1900 00:00 1900 00:00 1040 00:00 1040 00:00

14 2937 00:00 2936 00:00 1505 00:00 1501 00:00

15 14440 00:00 14425 00:00 7632 00:00 7617 00:00

16 15967 00:01 9338 00:00 7264 00:00 3989 00:00

17 210878 00:14 210850 00:13 107639 00:07 107611 00:07

18 9734 00:00 9734 00:00 5550 00:00 5550 00:00

19 102235 00:08 102235 00:08 13694 00:01 13690 00:01

20 351659 00:34 355964 00:33 157312 00:14 161410 00:14

21 14036353 21:38 10859861 16:01 9499957 14:14 6524396 09:13

22 58206362 01:37:30 58214183 01:33:03 17312971 24:37 17319946 23:54

23 14490682 30:12 14490682 29:16 6400629 11:01 6400629 10:33

24 27475258 55:05 27475258 53:11 9801577 16:39 9801577 16:10

25 35282646 01:23:12 35502799 01:21:25 13030167 25:16 13232221 25:15

26 92228265 03:28:20 92228259 03:22:33 29432477 55:38 29432467 54:08

Fig. 10. Impact of Interval Size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
im

e[
s]

Parameter

17
18
19
20
21
22
23
24
25
26

4 Decomposition

We saw in Figure 4 that only rather few complete assignments of the X variables
have to be tested to find an optimal solution for the problem. This suggests a
further decomposition where we solve the first part of the problem, the orienta-
tion of the rectangles and the assignment of the X variables, without considering
the Y variables at all. For this we only need the cumulative constraint for the X
variables, the second cumulative and the non-overlapping constraints are stated
only once the first subproblem has been solved, before we start the assignment
of the Y variables. This will avoid waking these constraints repeatedly as the
X variables are assigned. Given the number of nodes in the search tree, this
can add to significant savings. At the same time, we may loose important prop-
agation due to these constraints, and therefore increase the size of the search
tree of the subproblem. Experiments shows that this is not the case. Table 3
compares backtracking steps and execution times for the basic model without
and with the redundant constraints and the decomposed model, also without
and with the redundant constraints. The number of backtracks is the same for
all problem instances except 10 and 12. This is a clear indication that the non-
overlapping constraint and the second cumulative are not contributing anything
to the search in the initial phase. The difference in execution times are solely
due to avoiding unnecessary calls to these constraints in the first phase of the
search. The savings are limited, but still worthwhile. In the last two columns (De-
composed Reified) we show results for a model where we replace the disjoint2
constraint of SICStus with reified sets of inequalities for each pair of rectangles.
This is a much weaker form of the non-overallping constraint, but the results for
the decomposed model are quite similar. Clearly, the non-overlapping constraint
affects the performance only in a minor way.

Do we need the non-overlapping constraint at all? In [1] perfect placement
problems were solved by creating all solutions for the cumulative projections in x
and y direction, and then combining them with a checker for the non-overlapping
constraint. This will not be competitive for the almost square packing problem.
We have seen above (Table 1) that some problem instances have millions of
solutions. There will be a similar number of solutions for solving the x cumulative
alone. Testing each of those solutions against all solutions of the y cumulative
will be too expensive.

We can try to push the non-overlapping constraint to the overall end of the
search, and use it only as a checker. This will mean that in the second part of the
search we only use a single cumulative constraint in the y direction. Experiments
indicate that this is not competitive.

5 Comparison

In Table 4, we compare our results to those reported in [12]. Note that we
only count backtracking steps, not the total number of nodes as in [12]. We
can see that even our basic model dramatically outperforms Korf et al for large

Table 3. Decomposed Model Results

Without Redundant Constraints With Redundant Constraints
Basic Model Decomposed Model Basic Model Decomposed Model Decomposed Reified

N Back Time Back Time Back Time Back Time Back Time
4 2 00:00 2 00:00 2 00:00 2 00:00 2 00:00
5 4 00:00 4 00:00 1 00:00 1 00:00 1 00:00
6 16 00:00 16 00:00 6 00:00 6 00:00 6 00:00
7 19 00:00 19 00:00 9 00:00 9 00:00 9 00:00
8 6 00:00 6 00:00 10 00:00 10 00:00 10 00:00
9 54 00:00 54 00:00 27 00:00 27 00:00 27 00:00

10 323 00:00 323 00:00 159 00:00 176 00:00 176 00:00
11 99 00:00 99 00:00 54 00:00 54 00:00 54 00:00
12 546 00:00 546 00:00 274 00:00 301 00:00 301 00:00
13 1900 00:00 1900 00:00 1040 00:00 1040 00:00 1040 00:00
14 2937 00:00 2937 00:00 1501 00:00 1501 00:00 1501 00:00
15 14440 00:00 14440 00:00 7617 00:00 7617 00:00 7617 00:00
16 15967 00:01 15967 00:00 3989 00:00 3989 00:00 3989 00:00
17 210878 00:14 210878 00:11 107611 00:07 107611 00:05 107611 00:06
18 9734 00:00 9734 00:00 5550 00:00 5550 00:00 5550 00:00
19 102235 00:08 102235 00:06 13690 00:01 13690 00:00 13690 00:00
20 351659 00:34 351659 00:28 161410 00:14 161410 00:11 161410 00:16
21 14036353 21:38 14036353 18:26 6524396 09:13 6524396 07:10 6524396 08:05
22 58206362 01:37:30 58206362 01:21:36 17319946 23:54 17319946 19:13 17319946 21:50
23 14490682 30:12 14490682 24:45 6400629 10:33 6400629 08:04 6400629 08:58
24 27475258 55:05 27475258 44:23 9801577 16:10 9801577 12:11 9801577 13:07
25 35282646 01:23:12 35282646 01:10:17 13232221 25:15 13232221 20:07 13232773 23:34
26 92228265 03:28:20 92228265 02:51:27 29432467 54:08 29432467 40:26 29432467 43:51

problem sizes, the difference increases when our further improvements are taken
into account. But the differences are not uniform with the problem size, the
differences for instances 21 and 22 are much smaller.

Table 4. Comparison with [12]

Korf, Moffitt and Pollack Pure Redundant Decomposition
Size Area Nodes Times Back Times Back Times Back Times

17 34×57 6,889,973 :07 210878 00:14 107611 00:07 107611 00:05
18 30×76 22,393,428 :26 9734 00:00 5550 00:00 5550 00:00
19 35×76 11,918,834 :11 102235 00:08 13690 00:01 13690 00:00
20 35×88 608,635,198 12:50 351659 00:34 161410 00:14 161410 00:11
21 39×91 792,197,287 23:21 14036353 21:38 6524396 09:13 6524396 07:10
22 44×92 4,544,585,807 1:49:32 58206362 01:37:30 17319946 23:54 17319946 19:13
23 40×115 32,222,677,089 15:06:56 14490682 30:12 6400629 10:33 6400629 08:04
24 40×130 41,976,042,836 18:39:34 27475258 55:05 9801577 16:10 9801577 12:11
25 45×130 557,540,262,189 12:11:30:32 35282646 01:23:12 13232221 25:15 13232221 20:07
26 42×156 - - 92228265 03:28:20 29432467 54:08 29432467 40:26

6 Conclusion

In this paper we have extended our previous results [18] for packing squares
into the smallest enclosing rectangle to packing “almost squares”, rectangles of

sizes n× (n+ 1). For problem size N , this adds 2N additional choices. Using the
existing constraint model and carefully interleaving the assignment of X intervals
and the orientation of the rectangles, we can solve the problem to optimality
up to size 26, extending the previously best results [12] by one instance and
obtaining a large reduction in execution time. For this problem type, a further
decomposition of the problem into two phases is suggested by a visualization of
the search tree. We first solve the problem in x direction with a single cumulative
constraint, interleaving the orientation of the rectangles with the assignment of
intervals to the X variables, before fixing the X values. Only then do we state
the second cumulative constraint and the non-overlapping constraint. Together
with some redundant constraints, this leads to a further reduction of the search
space required.

Acknowledgment

This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).
The authors wish to thank Mats Carlsson, who provided the SICStus Prolog 4.0.4
used for the experiments.

References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing problems. Journal of Mathematical and Computer Modelling, 17(7):57 –73,
1993.

2. N. Beldiceanu, E. Bourreau, and H. Simonis. A note on perfect square placement,
1999. Prob009 in CSPLIB.

3. N. Beldiceanu and M. Carlsson. Sweep as a generic pruning technique applied to
the non-overlapping rectangles constraint. In Walsh [20], pages 377–391.

4. N. Beldiceanu, M. Carlsson, and E. Poder. New filtering for the cumulative con-
straint in the context of non-overlapping. In CP-AI-OR 08, Paris, May 2008.

5. N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A generic geo-
metrical constraint kernel in space and time for handling polymorphic -dimensional
objects. In Christian Bessiere, editor, CP, volume 4741 of Lecture Notes in Com-
puter Science, pages 180–194. Springer, 2007.

6. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal
of Mathematical and Computer Modelling, 20(12):97–123, 1994.

7. N. Beldiceanu, Q. Guo, and S. Thiel. Non-overlapping constraints between convex
polytopes. In Walsh [20], pages 392–407.

8. Eric Huang and Richard E. Korf. New improvements in optimal rectangle packing.
In Craig Boutilier, editor, IJCAI, pages 511–516, 2009.

9. Eric Huang and Richard E. Korf. Optimal rectangle packing on non-square bench-
marks. In Maria Fox and David Poole, editors, AAAI. AAAI Press, 2010.

10. R. E. Korf. Optimal rectangle packing: Initial results. In Enrico Giunchiglia, Nicola
Muscettola, and Dana S. Nau, editors, ICAPS, pages 287–295. AAAI, 2003.

11. R. E. Korf. Optimal rectangle packing: New results. In Shlomo Zilberstein, Jana
Koehler, and Sven Koenig, editors, ICAPS, pages 142–149. AAAI, 2004.

12. Richard Korf, Michael Moffitt, and Martha Pollack. Optimal rectangle packing.
Annals of Operations Research, 179:261–295, 2010. 10.1007/s10479-008-0463-6.

13. Des MacHale. The almost square problem, 2008. Personal Communication.
14. M. D. Moffitt, A. N. Ng, I. L. Markov, and M. E. Pollack. Constraint-driven

floorplan repair. In Ellen Sentovich, editor, DAC, pages 1103–1108. ACM, 2006.
15. M. D. Moffitt and M. E. Pollack. Optimal rectangle packing: A meta-CSP ap-

proach. In Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee McCluskey,
editors, ICAPS, pages 93–102. AAAI, 2006.

16. J. A. Roy and I. L. Markov. Eco-system: Embracing the change in placement. In
ASP-DAC, pages 147–152. IEEE, 2007.

17. Helmut Simonis, Paul Davern, Jacob Feldman, Deepak Mehta, Luis Quesada, and
Mats Carlsson. A generic visualization platform for CP. In Principles and Practice
of Constraint Programming, St. Andrews, Scotland, September 2010. Springer.

18. Helmut Simonis and Barry O’Sullivan. Search strategies for rectangle packing. In
Peter J. Stuckey, editor, CP, volume 5202 of Lecture Notes in Computer Science,
pages 52–66. Springer, 2008.

19. P. Van Hentenryck. Scheduling and packing in the constraint language cc(FD). In
M. Zweben and M. Fox, editors, Intelligent Scheduling. Morgan Kaufmann Pub-
lishers, San Francisco, USA, 1994.

20. T. Walsh, editor. Principles and Practice of Constraint Programming - CP 2001,
7th International Conference, CP 2001, Paphos, Cyprus, November 26 - December
1, 2001, Proceedings, volume 2239 of Lecture Notes in Computer Science. Springer,
2001.

