Chapter 4: Basic Constraint Reasoning
(SEND+MORE=MONEY)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELearning

Overview

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
Outline

1. Problem
2. Program
3. Constraint Setup
4. Search
5. Lessons Learned

What we want to introduce

- Finite Domain Solver in ECLiPSe
- Models and Programs
- Constraint Propagation and Search
- Basic constraints: linear arithmetic, alldifferent, disequality
- Built-in search: Labeling
- Visualizers for variables, constraints and search
A Crypt-Arithmetic Puzzle

We begin with the definition of the SEND + MORE = MONEY puzzle. It is often shown in the form of a hand-written addition:

\[
\begin{array}{c}
S E N D \\
+ M O R E \\
\hline
M O N E Y \\
\end{array}
\]

Rules

- Each character stands for a digit from 0 to 9.
- Numbers are built from digits in the usual, positional notation.
- Repeated occurrence of the same character denote the same digit.
- Different characters denote different digits.
- Numbers do not start with a zero.
- The equation must hold.
Each character is a variable, which ranges over the values 0 to 9.

An *alldifferent* constraint between all variables, which states that two different variables must have different values. This is a very common constraint, which we will encounter in many other problems later on.

Two *disequality constraints* (variable $X$ must be different from value $V$) stating that the variables at the beginning of a number cannot take the value 0.

An arithmetic *equality constraint* linking all variables with the proper coefficients and stating that the equation must hold.

```prolog
:- module(sendmory).
:- export(sendmory/1).
:- lib(ic).
sendmory(L):-
    L = [S,E,N,D,M,O,R,Y], % Variables
    L :: 0..9,
    alldifferent(L), % Constraints
    S #\= 0, M #\= 0,
    1000*S + 100*E + 10*N + D +
    1000*M + 100*O + 10*R + E #=
    10000*M + 1000*O + 100*N + 10*E + Y,
    labeling(L). % Search
```
Choice of Model

- This is *one* model, not *the* model of the problem
- Many possible alternatives
- Choice often depends on your constraint system
  - Constraints available
  - Reasoning attached to constraints
- Not always clear which is the *best* model
- Often: Not clear what is the *problem*

Running the program

- To run the program, we have to enter the query
  - `sendmory:sendmory(L).`
- Result
  - `L = [9, 5, 6, 7, 1, 0, 8, 2]`
  - `yes (0.00s cpu, solution 1, maybe more)`
But how did the program come up with this solution?

\[ L = [S, E, N, D, M, O, R, Y], \]
\[ L :: 0..9, \]
\[ [S, E, N, D, M, O, R, Y] \in \{0..9\} \]
Domain Visualization

Columns = Values

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Rows = Variables

Cells = State

Alldifferent Constraint

\[ \text{alldifferent}(L), \]

- Built-in of \text{ic} library
- No initial propagation possible
- \text{Suspends}, waits until variables are changed
- When variable is fixed, remove value from domain of other variables
- \text{Forward checking}
Alldifferent Visualization

Uses the same representation as the domain visualizer

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Disequality Constraints

\[ S \neq 0, M \neq 0, \]

Remove value from domain

\[ S \in \{1..9\}, M \in \{1..9\} \]

Constraints solved, can be removed
Domains after Disequality

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Normalization of linear terms
- Single occurrence of variable
- Positive coefficients

Propagation
Normalization

\[
\begin{align*}
1000S &  
100E & 
10N & 
D \\
+1000M & 
100O & 
10R & 
E \\
10000M & 
1000O & 
100N & 
10E & 
Y \\
\end{align*}
\]

is transformed into

\[
\begin{align*}
1000S & 
91E & 
10R & 
D \\
+ & 
10E \\
9000M & 
900O & 
90N & 
Y \\
\end{align*}
\]

Simplified Equation

\[
1000 \times S + 91 \times E + 10 \times R + D = 9000 \times M + 900 \times O + 90 \times N + Y
\]
Consider lower bound for $S$

\[
\begin{align*}
1000 \cdot S^{1..9} + 91 \cdot E^{0..9} + 10 \cdot R^{0..9} + D^{0..9} &= 9000 \cdot M^{1..9} + 900 \cdot O^{0..9} + 90 \cdot N^{0..9} + Y^{0..9} \\
\quad &\quad 9000..9918
\end{align*}
\]

- Lower bound of equation is 9000
- Rest of Lhs (left hand side) $(91 \cdot E^{0..9} + 10 \cdot R^{0..9} + D^{0..9})$ is atmost 918
- $S$ must be greater or equal to $\frac{9000-918}{1000} = 8.082$
  - otherwise lower bound of equation not reached by Lhs
- $S$ is integer, therefore $S \geq \lceil \frac{9000-918}{1000} \rceil = 9$
- $S$ has upper bound of 9, so $S = 9$
Consider upper bound of \( M \)

\[
\frac{1000 \times S^{1.9} + 91 \times E^{0.9} + 10 \times R^{0.9} + D^{0.9}}{9000..9918} = \frac{9000 \times M^{1.9} + 900 \times O^{0.9} + 90 \times N^{0.9} + Y^{0.9}}{9000..9918}
\]

- Upper bound of equation is 9918
- Rest of rhs (right hand side) \( 900 \times O^{0.9} + 90 \times N^{0.9} + Y^{0.9} \) is at least 0
- \( M \) must be smaller or equal to \( \frac{9918 - 0}{9000} = 1.102 \)
- \( M \) must be integer, therefore \( M \leq \lfloor \frac{9918 - 0}{9000} \rfloor = 1 \)
- \( M \) has lower bound of 1, so \( M = 1 \)

Consider upper bound of \( O \)

\[
\frac{1000 \times S^{1.9} + 91 \times E^{0.9} + 10 \times R^{0.9} + D^{0.9}}{9000..9918} = \frac{9000 \times M^{1.9} + 900 \times O^{0.9} + 90 \times N^{0.9} + Y^{0.9}}{9000..9918}
\]

- Upper bound of equation is 9918
- Rest of rhs (right hand side) \( 9000 \times 1 + 90 \times N^{0.9} + Y^{0.9} \) is at least 9000
- \( O \) must be smaller or equal to \( \frac{9918 - 9000}{900} = 1.02 \)
- \( O \) must be integer, therefore \( O \leq \lfloor \frac{9918 - 9000}{900} \rfloor = 1 \)
- \( O \) has lower bound of 0, so \( O \in \{0..1\} \)
### Propagation of equality: Result

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

### Propagation of alldifferent

\[
O = 0, [E, R, D, N, Y] \in \{2..8\}
\]
Waking the equality constraint

- Triggered by assignment of variables
- or update of lower or upper bound

Removal of constants

\[ 1000 \times 9 + 91 \times E^{2..8} + 10 \times R^{2..8} + D^{2..8} = \\
9000 \times 1 + 900 \times 0 + 90 \times N^{2..8} + Y^{2..8} \]

\[ 1000 \times 9 + 91 \times E^{2..8} + 10 \times R^{2..8} + D^{2..8} = \\
9000 \times 1 + 900 \times 0 + 90 \times N^{2..8} + Y^{2..8} \]

\[ 91 \times E^{2..8} + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{2..8} + Y^{2..8} \]
Propagation of equality (Iteration 1)

\[ 91 \times E^{2..8} + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{2..8} + Y^{2..8} \]
\[ 204.816 \]
\[ 182.728 \]

\[ N \geq 3 = \left\lceil \frac{204 - 8}{90} \right\rceil, \quad E \leq 7 = \left\lfloor \frac{728 - 22}{91} \right\rfloor \]

Propagation of equality (Iteration 2)

\[ 91 \times E^{2..7} + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{3..8} + Y^{2..8} \]
\[ 204.725 \]
\[ 272.728 \]

\[ E \geq 3 = \left\lceil \frac{272 - 88}{91} \right\rceil \]
Propagation of equality (Iteration 3)

\[ 91 \cdot E^{3..7} + 10 \cdot R^{2..8} + D^{2..8} = 90 \cdot N^{3..8} + Y^{2..8} \]

\[ \frac{91 \cdot E^{3..7} + 10 \cdot R^{2..8} + D^{2..8}}{295..725} = \frac{90 \cdot N^{3..8} + Y^{2..8}}{272..728} \]

\[ \frac{91 \cdot E^{3..7} + 10 \cdot R^{2..8} + D^{2..8}}{295..725} = 90 \cdot N^{3..8} + Y^{2..8} \]

\[ N \geq 4 = \left \lfloor \frac{295 - 8}{90} \right \rfloor \]

Propagation of equality (Iteration 4)

\[ 91 \cdot E^{3..7} + 10 \cdot R^{2..8} + D^{2..8} = 90 \cdot N^{4..8} + Y^{2..8} \]

\[ \frac{91 \cdot E^{3..7} + 10 \cdot R^{2..8} + D^{2..8}}{295..725} = \frac{90 \cdot N^{4..8} + Y^{2..8}}{362..728} \]

\[ \frac{91 \cdot E^{3..7} + 10 \cdot R^{2..8} + D^{2..8}}{362..725} = 90 \cdot N^{4..8} + Y^{2..8} \]

\[ E \geq 4 = \left \lfloor \frac{362 - 88}{91} \right \rfloor \]
Propagation of equality (Iteration 5)

\[ 91 \times E^{4..7} + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{4..8} + Y^{2..8} \]

\[ 91 \times E^{4..7} + 10 \times R^{2..8} + D^{2..8} = \frac{386.725}{362.728} \times 90 \times N^{4..8} + Y^{2..8} \]

\[ 91 \times E^{4..7} + 10 \times R^{2..8} + D^{2..8} = \frac{386.725}{386.725} \times 90 \times N^{4..8} + Y^{2..8} \]

\[ N \geq 5 = \left\lceil \frac{386 - 8}{90} \right\rceil \]

Propagation of equality (Iteration 6)

\[ 91 \times E^{4..7} + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{5..8} + Y^{2..8} \]

\[ 91 \times E^{4..7} + 10 \times R^{2..8} + D^{2..8} = \frac{386.725}{452.728} \times 90 \times N^{5..8} + Y^{2..8} \]

\[ 91 \times E^{4..7} + 10 \times R^{2..8} + D^{2..8} = \frac{452.725}{452.725} \times 90 \times N^{5..8} + Y^{2..8} \]

\[ N \geq 5 = \left\lceil \frac{452 - 8}{90} \right\rceil, E \geq 4 = \left\lceil \frac{452 - 88}{91} \right\rceil \]

No further propagation at this point
labeling built-in

labeling([S, E, N, D, M, O, R, Y])

- Try variable is order given
- Try values starting from smallest value in domain
- When failing, backtrack to last open choice
- *Chronological Backtracking*
- *Depth First search*
Variable $S$ already fixed

Step 2, Alternative $E = 4$

Variable $E \in \{4..7\}$, first value tested is 4
Assignment $E = 4$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Propagation of $E = 4$, equality constraint

\[ 91 \times 4 + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{5..8} + Y^{2..8} \]

\[ 91 \times 4 + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{5..8} + Y^{2..8} \]

\[ 91 \times 4 + 10 \times R^{2..8} + D^{2..8} = 90 \times N^{5..8} + Y^{2..8} \]

\[ N = 5, \; Y = 2, \; R = 8, \; D = 8 \]
Result of equality propagation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Alldifferent fails!
Step 2, Alternative $E = 5$

Return to last open choice, $E$, and test next value

Assignment $E = 5$
Propagation of alldifferent

\[ N \neq 5, \quad N \geq 6 \]

\[ 91 \times 5 + 10 \times R^2.8 + D^2.8 = 90 \times N^6.8 + Y^{2.8} \]

\[ 477.543 \]

\[ 542.728 \]

\[ 91 \times 5 + 10 \times R^2.8 + D^2.8 = 90 \times N^6.8 + Y^{2.8} \]

\[ 542.543 \]

\[ N = 6, \quad Y \in \{2, 3\}, \quad R = 8, \quad D \in \{7, 8\} \]
Result of equality propagation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

$D = 7$

Propagation of \textit{alldifferent}
Propagation of equality

\[ 91 \times 5 + 10 \times 8 + 7 = 90 \times 6 + Y^{2..3} \]

\[ 91 \times 5 + 10 \times 8 + 7 = 90 \times 6 + Y^{2..3} \]
\[ \underline{542} \]
\[ Y = 2 \]

Last propagation step

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Helmut Simonis Basic Constraint Reasoning 49
Complete Search Tree

Solution

\[
\begin{array}{c}
9 & 5 & 6 & 7 \\
+ & 1 & 0 & 8 & 5 \\
\hline
1 & 0 & 6 & 5 & 2
\end{array}
\]
Topics introduced

- Finite Domain Solver in ECLiPSe, `ic library`
- Models and Programs
- Constraint Propagation and Search
- Basic constraints: linear arithmetic, `alldifferent`, disequality
- Built-in search: `labeling`
- Visualizers for variables, constraints and search

Lessons Learned

- Constraint models are expressed by variables and constraints.
- Problems can have many different models, which can behave quite differently. Choosing the best model is an art.
- Constraints can take many different forms.
- Propagation deals with the interaction of variables and constraints.
- It removes some values that are inconsistent with a constraint from the domain of a variable.
- Constraints only communicate via shared variables.
Lessons Learned

- Propagation usually is not sufficient, search may be required to find a solution.
- Propagation is data driven, and can be quite complex even for small examples.
- The default search uses chronological depth-first backtracking, systematically exploring the complete search space.
- The search choices and propagation are interleaved, after every choice some more propagation may further reduce the problem.

Alternative 1

- Do we need the constraint “Numbers do not begin with a zero”?
- This is not given explicitly in the problem statement
- Remove disequality constraints from program
- Previous solution is still a solution
- Does it change propagation?
- Does it have more solutions?
Listing 1: Alternative 1

:-module(alternative1).
:-export(sendmory/1).
:-lib(ic).

sendmory(L):-  
    L = [S,E,N,D,M,O,R,Y], 
    L :: 0..9, 
    all diferentes(L), 
    1000*S + 100*E + 10*N + D + 
    1000*M + 100*O + 10*R + E #= 
    10000*M + 1000*O + 100*N + 10*E + Y, 
    labeling(L).

After Setup without Disequality
Setup Comparison

Alternative Models
Exercises
Model without Disequality
Multiple Equations

original

```
  0 1 2 3 4 5 6 7 8 9
 S
 E
 N  D  M
 O
 R
 Y
```

alternative 1

```
  0 1 2 3 4 5 6 7 8 9
 S
 E
 N
 D  M
 O
 R
 Y
```

Search Tree: Many Solutions

```
```

Helmut Simonis
Basic Constraint Reasoning
59

Helmut Simonis
Basic Constraint Reasoning
60
Note:

- Not just a different model, solving a different problem!
- Often we can choose which problem we want to solve
  - Which constraints to include
  - What to ignore
- In this case not acceptable

Alternative 2

- Large equality difficult to understand by humans
- Replace with multiple, simpler equations
- Linked by carry variables (0/1)
- Should produce same solutions
- Does it give same propagation?

\[
\begin{array}{cccccc}
S & E & N & D \\
+ & M & O & R & E \\
\hline
+ & C_5 & C_4 & C_3 & C_2 \\
M & O & N & E & Y
\end{array}
\]
Carry Variables with Multiple Equations

:-module(alternative2),export(sendmory/1),lib(ic).
sendmory(L):=\same as before
    L=[S,E,N,D,M,O,R,Y],L :: 0..9,
    [C2,C3,C4,C5] :: 0..1, \new
    alldifferent(L),
    S \#= 0,M \#= 0,
    M \= C5,
    S+M+C4 \= 10*C5+O,
    E+O+C3 \= 10*C4+N,
    N+R+C2 \= 10*C3+E,
    D+E \= 10*C2+Y,
    labeling(L).
This is solving the original problem
Search tree slightly bigger
Caused here by missing interaction of equations
And repeated variables
But: Introducing auxiliary variables not always bad!
Exercises

1. Does the reasoning for the equality constraints that we have presented remove all inconsistent values? Consider the constraint Y=2*X.
2. Why is it important to remove multiple occurrences of the same variable from an equality constraint? Give an example!
3. Solve the puzzle DONALD+GERALD=ROBERT. What is the state of the variables before the search, after the initial constraint propagation?
4. Solve the puzzle Y*WORRY = DOOOOD. What is different?
5. (extra credit) How would you design a program that finds new crypt-arithmetic puzzles? What makes a good puzzle?