Chapter 9: Choosing the Model (Sports Scheduling)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELearning
This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
Outline

1. Problem
2. Model
3. Program
4. Search
5. Redundant Modelling
What we want to introduce

- How to come up with a model for a problem
- Why choosing a good model is an art
- Channeling
- Projection
- Redundant constraints
Outline

1. Problem
2. Model
3. Program
4. Search
5. Redundant Modelling
Sports Scheduling

Tournament Planning

We plan a tournament with 8 teams, where every team plays every other team exactly once. The tournament is played on 7 days, each team playing on each day. The games are scheduled in 7 venues, and each team should play in each venue exactly once.

As part of the TV arrangements, some preassignments are done: We may either fix the game between two particular teams to a fixed day and venue, or only state that some team must play on a particular day at a given venue. The objective is to complete the schedule, so that all constraints are satisfied.
Example

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
</tr>
</tbody>
</table>
Solution

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>6, 8</td>
<td></td>
<td>1, 2</td>
<td>5, 7</td>
<td></td>
<td>3, 4</td>
</tr>
<tr>
<td>Day 2</td>
<td>2, 3</td>
<td>1, 5</td>
<td></td>
<td></td>
<td>4, 8</td>
<td>6, 7</td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>1, 7</td>
<td>2, 4</td>
<td>3, 8</td>
<td></td>
<td></td>
<td></td>
<td>5, 6</td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td>4, 7</td>
<td>2, 6</td>
<td>3, 5</td>
<td>1, 8</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>5, 8</td>
<td></td>
<td></td>
<td>3, 6</td>
<td></td>
<td>1, 4</td>
<td>2, 7</td>
</tr>
<tr>
<td>Day 6</td>
<td>3, 7</td>
<td></td>
<td>1, 6</td>
<td>4, 5</td>
<td></td>
<td>2, 8</td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4, 6</td>
<td></td>
<td>2, 5</td>
<td>7, 8</td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A More Abstract Formulation

Rooms Puzzle, (Thomas G. Room, 1955)

Place numbers 1 to 8 in cells so that each row and each column has each number exactly once, each cell contains either no numbers or two numbers (which must be different from each other), and each combination of two different numbers appears in exactly one cell.
Rooms Puzzle, (Thomas G. Room, 1955)

Place numbers 1 to 8 in cells so that each row and each column has each number exactly once, each cell contains either no numbers or two numbers (which must be different from each other), and each combination of two different numbers appears in exactly one cell.

Puzzle presented by R. Finkel
Outline

1 Problem

2 Model
 - Exploring Ideas
 - Expanding Idea 7
 - Comparing Ideas
 - Channeling
 - Selected Model

3 Program

4 Search
How to come up with a model

- What are the variables/what are their values?
- How can we express the constraints?
- Do we have these constraints in our system?
- Does this do good propagation?
- Backtrack to earlier step as required
1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is at most one game at a time
Idea 1

- Matrix $Day \times Game \ (7 \times 4)$
- Each cell contains two variables, denoting teams
- Easy to say that team plays once on each day, `alldifferent`
- Columns don’t have significance
- Model does not mention location, how to add this?
- How to express that each team plays each other once?
Idea 2, Change problem structure

- Matrix of $Day \times Location$ (7×7)
- Each cell contains two variables, each denoting a team
- How do we avoid symmetry inside cell?
- Need special value (0) to denote that there is no game
- In one cell, either both or none of the variables are 0
- Easy to say that each row and column contains each team exactly once
- Except for value 0, can not use `alldifferent`
- Link between two variables in cell to state that game needs two different teams
- How to express that each (ordered) pair occurs exactly once?
Idea 3, Add location variables

- Model as in Idea 1, matrix $Day \times Game$
- Each cell contains two variables for teams and one for location
- Easy to state that games on one day are in different locations
- How to express condition that each team plays in each location once?
- Also, how to express that each team plays each other exactly once?
Idea 4, Use variables for pairs

- **Matrix** $\text{Day} \times \text{Location}$
- Each cell contains one variable ranging over (sorted) pairs of teams, and special value 0 (no game)
- Each pair value occurs once, except for 0
 - Special constraint alldifferent0
 - Or use gcc
- How to state that each team plays once per day?
- How to state that each team plays in each location?
Idea 5: If all else fails, use binary variables

- Binary variable stating that team i plays in location j at day k
- Three dimensional matrix
- Each team plays once on each day
- Each team plays once in each location
- Each game has two (different) teams, needs auxiliary variable
- Each pair of team meets once, needs auxiliary variables
Idea 6: An even bigger binary model

- Use four dimensions
- Team i meets team j in location k on day l
- $3136 = 8 \times 8 \times 7 \times 7$ variables
- Constraints all linear
- Why use finite domain constraints?
Idea 7: A different mapping

- Each team plays each other exactly once, one variable for each combination ($8 \times 7 / 2 = 28$ variables)
- Decide when and where this game is played, values range over combinations of days and locations ($7 \times 7 = 49$ values)
- All variables must be different (no two games at same time and location)
- Each team plays 7 games, by construction
- How to express that each team plays once per day?
- How to express that each team plays in each location once?
Expand Idea 7 into Full Model
Numbering Values

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Day 2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Day 3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Day 4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Day 5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Day 6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Day 7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>
Four games on each day

- Day 1 corresponds to values 1..7
- Four variables can take these values
- Day 2 corresponds to values 8..14, etc
- One constraint per day
- Exactly four of all variables take their value in the set ...
- Seven such constraints
Four games at each location

- City 1 corresponds to values: 1, 8, 15, 22, 29, 36, 43
- Four variables can take these values
- City 2 corresponds to values: 2, 9, 16, 23, 30, 37, 44
- One constraint per location
- Exactly four of all variables take their value in the set ...
- Seven such constraints over 28 variables each
Teams plays once on a day (at a location)

- Select those variables which correspond to Team i
- Exactly one of those variables takes its value in the set 1..7
- Same for all other days
- Same for all other teams
- 56 Constraints over 7 variables each
- Similar for teams and locations, another 56 constraints
Are we there yet?

- 28 variables with 49 possible values
- 1 alldifferent
- 7 exactly constraints over all variables (Days)
- 7 exactly constraints over all variables (Locations)
- 56 exactly constraints over 7 variables each (Days)
- 56 exactly constraints over 7 variables each (Locations)

Forgotten anything?

Check the requirements
Are we there yet?

- 28 variables with 49 possible values
- 1 alldifferent
- 7 exactly constraints over all variables (Days)
- 7 exactly constraints over all variables (Locations)
- 56 exactly constraints over 7 variables each (Days)
- 56 exactly constraints over 7 variables each (Locations)
- Forgotten anything?
- Check the requirements
Are we there yet?

- 28 variables with 49 possible values
- 1 alldifferent
- 7 exactly constraints over all variables (Days)
- 7 exactly constraints over all variables (Locations)
- 56 exactly constraints over 7 variables each (Days)
- 56 exactly constraints over 7 variables each (Locations)
- Forgotten anything?
- **Check the requirements**
Do we satisfy the requirements?

By construction

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is at most one game at a time
Do we satisfy the requirements?

By construction

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is at most one game at a time
Do we satisfy the requirements?

By construction

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is atmost one game at a time
Do we satisfy the requirements?

56 exactly constraints on 7 variables

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is at most one game at a time
Do we satisfy the requirements?

56 exactly constraints on 7 variables

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is atmost one game at a time
Do we satisfy the requirements?

By construction

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is at most one game at a time
Do we satisfy the requirements?

7 exactly constraints on 28 variables

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is atmost one game at a time
Do we satisfy the requirements?

7 exactly constraints on 28 variables

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is at most one game at a time
Do we satisfy the requirements?

alldifferent

1. There are 8 teams, seven days and seven locations
2. Each team plays each other team exactly once
3. Each team plays 7 games (redundant)
4. Each team plays in each location exactly once
5. Each team plays on each day exactly once
6. A game consists of two (different) teams
7. There are four games on each day (redundant)
8. There are four games at each location (redundant)
9. In any location there is atmost one game at a time
What about the exactly constraint?

- ECLiPSe doesn’t provide this constraint
 - Other system might do, could switch system
- Implement it
 - Extend gcc to allow multiple values
 - Should be last resort
- Emulate constraint with others
Idea 8: Mapping games to days and locations

- For each game to be played, we have two variables
 - One ranges over the days
 - The other over the locations
- Easy to state that there are four games per day and location
- Easy to state that each team plays once per day and location
- How do we express that no two games are played at the same location and the same time?
 - If we had an `alldifferent` over pairs of variables...
 - Not in ECLiPSe
We have four games on each day

- Each row value is taken four times amongst the variables
- \(\text{gcc}([\text{gcc}(4,4,1), \ldots, \text{gcc}(4,4,7)], \text{Rows}) \)
- Similar for columns:
- \(\text{gcc}([\text{gcc}(4,4,1), \ldots, \text{gcc}(4,4,7)], \text{Cols}) \)
Reminder: $gcc(Pattern, Variables)$

- gcc *global cardinality constraint*
- *Pattern* is list of terms $gcc(Low, High, Value)$
- The overall number of variables taking value $Value$ is between Low and $High$
- Generalization of *alldifferent*
- Domain consistent version in ECLiPSe
Each team plays once per day

- For the seven variables which describe games of a team
- Each row value is taken exactly once amongst the variables
- Could use
 \[\text{gcc}([\text{gcc}(1,1,1),\ldots,\text{gcc}(1,1,7)],\text{Vars}) \]
- But \text{alldifferent}(\text{Vars}) is more compact
- Similar for columns
How do the models differ?

<table>
<thead>
<tr>
<th>Idea</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$D \times G \times {f, s} \to T$</td>
</tr>
<tr>
<td>2</td>
<td>$D \times L \times {f, s} \to T \cup {0}$</td>
</tr>
</tbody>
</table>
| 3 | $D \times G \times \{f, s\} \to T$
| | $D \times G \to L$ |
| 4 | $D \times L \to T \triangle T \cup \{0\}$ |
| 5 | $T \times D \times L \to \{0, 1\}$ |
| 6 | $T \times T \times D \times L \to \{0, 1\}$ |
| 7 | $T \triangle T \to D \times L$ |
| 8 | $T \triangle T \to D$
| | $T \triangle T \to L$ |

D Days
T Teams
L Locations
G Games
Requirements Capture

<table>
<thead>
<tr>
<th>Idea</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
</tbody>
</table>
Requirements Capture

Req 1: There are 8 teams, seven days and seven locations

<table>
<thead>
<tr>
<th>Idea</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N Y Y Y Y ? ?</td>
</tr>
<tr>
<td>2</td>
<td>C Y Y Y Y Y Y</td>
</tr>
<tr>
<td>3</td>
<td>C Y Y Y Y Y Y</td>
</tr>
<tr>
<td>4</td>
<td>C Y Y Y Y Y Y</td>
</tr>
<tr>
<td>5</td>
<td>C NL L L L NL L L NL</td>
</tr>
<tr>
<td>6</td>
<td>C L L L L L L L L</td>
</tr>
<tr>
<td>7</td>
<td>C C C E E C E E A</td>
</tr>
<tr>
<td>8</td>
<td>C C C A A C G G ?</td>
</tr>
</tbody>
</table>

- Y: yes, N: no, ?: unknown
- C: by construction, L: linear, NL: non-linear
- E: exactly, G: gcc, A: all different
Requirements Capture

Req 2: Each team plays each other team exactly once

<table>
<thead>
<tr>
<th>Idea</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>?</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>?</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>NL</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>?</td>
</tr>
</tbody>
</table>

Legend:
- **Y**: yes
- **N**: no
- **?**: unknown
- **C**: by construction
- **L**: linear
- **NL**: non-linear
- **E**: exactly
- **G**: gcc
- **A**: alldifferent
Requirements Capture

Req 3: Each team plays 7 games

<table>
<thead>
<tr>
<th>Idea</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
</tbody>
</table>
Requirements Capture

Req 4: Each team plays in each location exactly once

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>NL</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>
Requirements Capture

Req 5: Each team plays on each day exactly once

<table>
<thead>
<tr>
<th>Idea</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
</tbody>
</table>
Requirements Capture

Req 6: A game consists of two (different) teams

<table>
<thead>
<tr>
<th>Idea</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
</tbody>
</table>

Y	yes
N	no
?	unknown
C	by construction
L	linear
NL	non-linear
E	exactly
G	gcc
A	all different

Helmut Simonis Choosing the Model 50
Requirements Capture

Req 7: There are four games on each day

<table>
<thead>
<tr>
<th>Idea</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
</tbody>
</table>
Requirements Capture

Req 8: There are four games at each location

<table>
<thead>
<tr>
<th>Idea</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>?</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>?</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>NL</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>?</td>
</tr>
</tbody>
</table>

- **Y**: yes
- **N**: no
- **?**: unknown
- **C**: by construction
- **L**: linear
- **NL**: non-linear
- **E**: exactly
- **G**: gcc
- **A**: all different
Requirements Capture

Req 9: In any location there is atmost one game at a time

<table>
<thead>
<tr>
<th>Idea</th>
<th>Requirement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>?</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NL</td>
<td>L</td>
<td>L</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Comments on models

<table>
<thead>
<tr>
<th>Idea</th>
<th>Main point</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>missing locations, first second symmetry</td>
</tr>
<tr>
<td>2</td>
<td>spare value, first second symmetry</td>
</tr>
<tr>
<td>3</td>
<td>first second symmetry</td>
</tr>
<tr>
<td>4</td>
<td>spare value</td>
</tr>
<tr>
<td>5</td>
<td>0/1, non-linear constraints</td>
</tr>
<tr>
<td>6</td>
<td>0/1, large matrix</td>
</tr>
<tr>
<td>7</td>
<td>needs exactly constraint</td>
</tr>
<tr>
<td>8</td>
<td>needs alldifferent on tuples</td>
</tr>
</tbody>
</table>
Viewpoints and Channeling

- Instead of expressing all constraints over one set of variables
- Use multiple sets of variables (*viewpoints*)
- Decide which constraint to express over which variables
- Allows more freedom on how to express problem
- Link the different variables with *channeling* constraints
In Our Case

- Combine ideas 7 and 8
- One set of variables ranging over pairs
- Another using two variables per game for day and location
- How to combine variables?
- Minimize loss of information
Projection

- Link pair variables to row and column variables
- Pair variable uses cell numbers 1-49 as values
- Row and column variables indicate on which day (row) and in which location (column) the game is played
- Pair value 23 = row 4, column 2
- element constraint to link the variables
- Two projections from $D \times L$ space onto D and L
Mapping cells to rows and columns

<table>
<thead>
<tr>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Day 2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Day 3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Day 4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Day 5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>Day 6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>Day 7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>

element(Cell, [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7], Col),
Mapping cells to rows and columns

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Day 2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Day 3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Day 4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Day 5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Day 6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Day 7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>

element(23, [1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7], 4),

element(23, [1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7], 2),
This is one common type, a *projection*

Another common type is the *inverse*
- Link a variable $A \rightarrow B$ to another $B \rightarrow A$
- Typically used for bijective mappings
- Built-in `inverse/2`

Also used: *Boolean* channeling
- Link variables $A \rightarrow B$ and $A \times B \rightarrow \{0, 1\}$
- Built-in `bool_channeling/3`
Two sets of variables (Req 1, 2, 3, 6, by construction)

- Pair variables \((T \triangle T \rightarrow D \times L)\)
 - `alldifferent` (Req 9)
- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L)\)
 - `gcc` (Req 4, 5)
 - `alldifferent` (Req 7, 8)

- Channeling Constraints
 - `element` projection from pairs onto rows and columns

- Search only on pair variables
Selected Model

Req 1: There are 8 teams, seven days and seven locations

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables \(T \triangle T \rightarrow D \times L \)
 - \text{alldifferent} (Req 9)
- Day and Location variables \(T \triangle T \rightarrow D \), \(T \triangle T \rightarrow L \)
 - \text{gcc} (Req 4, 5)
 - \text{alldifferent} (Req 7, 8)
- Channeling Constraints
 - \text{element} projection from pairs onto rows and columns
- Search only on pair variables
Selected Model

Req 2: Each team plays each other team exactly once

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables \((T \triangle T \rightarrow D \times L)\)
 - \texttt{alldifferent} (Req 9)
- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L)\)
 - \texttt{gcc} (Req 4, 5)
 - \texttt{alldifferent} (Req 7, 8)
- Channeling Constraints
 - \texttt{element} projection from pairs onto rows and columns
- Search only on pair variables
Req 3: Each team plays 7 games

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables \((T \triangle T \rightarrow D \times L)\)
 - \texttt{alldifferent} (Req 9)
- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L)\)
 - \texttt{gcc} (Req 4, 5)
 - \texttt{alldifferent} (Req 7, 8)
- Channeling Constraints
 - \texttt{element} projection from pairs onto rows and columns
- Search only on pair variables
Selected Model

Req 4: Each team plays in each location exactly once

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables \((T \triangle T \rightarrow D \times L)\)
 - \textit{alldifferent} (Req 9)
- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L)\)
 - \texttt{gcc} (Req 4, 5)
 - \textit{alldifferent} (Req 7, 8)
- Channeling Constraints
 - \texttt{element} projection from pairs onto rows and columns
- Search only on pair variables
Selected Model

Req 5: Each team plays on each day exactly once

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables \((T \triangle T \rightarrow D \times L)\)
 - \texttt{alldifferent} (Req 9)
- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L)\)
 - \texttt{gcc} (Req 4, 5)
 - \texttt{alldifferent} (Req 7, 8)
- Channeling Constraints
 - \texttt{element} projection from pairs onto rows and columns
- Search only on pair variables
Req 6: A game consists of two (different) teams

- Two sets of variables (Req 1, 2, 3, 6, by construction)

- Pair variables \((T \triangle T \rightarrow D \times L) \)
 - \texttt{alldifferent} (Req 9)

- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L) \)
 - \texttt{gcc} (Req 4, 5)
 - \texttt{alldifferent} (Req 7, 8)

- Channeling Constraints
 - \texttt{element} projection from pairs onto rows and columns

- Search only on pair variables
Req 7: There are four games on each day

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables \((T \triangle T \rightarrow D \times L)\)
 - \texttt{alldifferent} (Req 9)
- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L)\)
 - \texttt{gcc} (Req 4, 5)
 - \texttt{alldifferent} (Req 7, 8)
- Channeling Constraints
 - \texttt{element} projection from pairs onto rows and columns
- Search only on pair variables
Selected Model

Req 8: There are four games at each location

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables \((T \triangle T \rightarrow D \times L)\)
 - `alldifferent` (Req 9)
- Day and Location variables \((T \triangle T \rightarrow D), (T \triangle T \rightarrow L)\)
 - `gcc` (Req 4, 5)
 - `alldifferent` (Req 7, 8)
- Channeling Constraints
 - `element` projection from pairs onto rows and columns
- Search only on pair variables
Selected Model

Req 9: In any location there is atmost one game at a time

- Two sets of variables (Req 1, 2, 3, 6, by construction)
- Pair variables ($T \triangle T \rightarrow D \times L$)
 - alldifferent (Req 9)
- Day and Location variables ($T \triangle T \rightarrow D$), ($T \triangle T \rightarrow L$)
 - gcc (Req 4, 5)
 - alldifferent (Req 7, 8)
- Channeling Constraints
 - element projection from pairs onto rows and columns
- Search only on pair variables
Handling of hints (I)

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td></td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Day 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This value (17) cannot be used by pairs not involving team 8.
- One of the pairs involving team 8 must use this value (17).
Handling of hints (I)

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This value (17) can not be used by pairs not involving team 8
- One of the pairs involving team 8 must use this value (17)
Handling of hints (I)

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This value (17) can not be used by pairs not involving team 8
- One of the pairs involving team 8 must use this value (17)
Handling of hints (II)

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The pair involving teams 5 and 7 must take value 5, fixes variable
<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pair involving teams 5 and 7 must take value 5, fixes variable.
Outline

1. Problem
2. Model
3. Program
4. Search
5. Redundant Modelling
Problem Data

\[
\text{hint}(1, 8, [2-[8], 5-[5, 7], 8-[2], 9-[1, 5], 15-[7], 17-[8], 26-[2], 27-[5], 28-[1], 29-[8], 34-[1], 39-[4, 5], 43-[4], 47-[1, 3])).
\]
top(Problem,L):-
hint(Problem,N,Hints),
N1 is N-1,
N2 is N//2,
NrVars is N*N1//2,
SizeDomain is N1*N1,
length(L,NrVars),
L :: 1..SizeDomain,
create_pairs(N,Contains,Names),
ic_global_gac:alldifferent(L),
process_hints(L,Contains,Hints),
...

Choosing the Model

Helmut Simonis
Main Program (continued)

project_row_cols(L,N1,Rows,Cols),
limit(Rows,N2,N1),
limit(Cols,N2,N1),
separate(Contains,Rows,N,SplitRows),
separate(Contains,Cols,N,SplitCols),
(foreach(K,SplitRows) do
 ic_global_gac:alldifferent(K)
),
(foreach(K,SplitCols) do
 ic_global_gac:alldifferent(K)
),
search(L,0,input_order,indomain,
complete,[]).
create_pairs(N,Contains,Names):-
 (for(I,1,N-1),
 fromto(Names,A1,A,[[]]),
 fromto(Contains,B1,B,[]),
 param(N) do
 (for(J,I+1,N),
 fromto(A1,[Name|AA],AA,A),
 fromto(B1,[I-J|BB],BB,B),
 param(I) do
 concat_string([I,J],Name)
)
).
Projecting Rows and Columns

\[
\text{project_row_cols}(L,N,\text{Rows},\text{Cols}) :- \\
generate_tables(N,\text{RowTable},\text{ColTable}), \\
(\text{foreach}(X,L), \\
\text{foreach}(R,\text{Rows}), \\
\text{foreach}(C,\text{Cols}), \\
\text{param(\text{RowTable},\text{ColTable}) do} \\
\text{element}(X,\text{RowTable},R), \\
\text{element}(X,\text{ColTable},C) \\
). \\
\]
generate_tables(N,RowTable,ColTable):-
(for(I,1,N),
 fromto(RowTable,A1,A,[]),
 fromto(ColTable,B1,B,[]),
 param(N) do
 (for(J,1,N),
 fromto(A1,[I|AA],AA,A),
 fromto(B1,[J|BB],BB,B),
 param(I) do
 true
)
).

Helmut Simonis Choosing the Model 82
Extract row variables

```
separate(Contains, Rows, Values, SplitRows):-
    (for(Value, 1, Values),
     foreach(SplitRow, SplitRows),
     param(Contains, Rows) do
        (foreach(A-B, Contains), foreach(V, Rows),
         fromto([], R, R1, SplitRow), param(Value) do
            (memberchk(Value, [A, B]) ->
               R1 = [V | R]
            ;
               R1 = R
            )
        )
   ).
```
Set up gcc constraint

\[
\text{limit}(L, \text{Bound}, \text{Values}) :- \\
\quad (\text{for}(I, 1, \text{Values}), \\
\quad \text{foreach}(\text{gcc}(\text{Bound}, \text{Bound}, I), \text{Pattern}), \\
\quad \text{param}(\text{Bound}) \text{ do} \\
\quad \quad \text{true} \\
\quad), \\
\quad \text{gcc}(\text{Pattern}, L). \\
\]
Setting up hints

\[
\text{process_hints}(L,\text{Contains},\text{Hints}):=\nonumber \\
\text{(foreach}(\text{Pos}\text{-Values},\text{Hints}),\nonumber \\
\text{param}(L,\text{Contains}) \text{ do} \nonumber \\
\text{process_hint}(\text{Pos},\text{Values},L,\text{Contains}) \nonumber \\
)\nonumber \\
\]

\[
\text{process_hint}(\text{Pos},[A,B],L,\text{Contains}):=\ % \text{ clause 1} \nonumber \\
!, \nonumber \\
\text{match_hint}(A-B,\text{Contains},L,X), \nonumber \\
X \neq \text{ Pos}. \nonumber
\]
process_hint(Pos, [Value], L, Contains):- % clause 2
(foreach(X, L),
 foreach(A-B, Contains),
 fromto([], R, R1, Required),
 param(Pos, Value) do
 (not_mentioned(A, B, Value) ->
 X #\= Pos,
 R1 = R
 ;
 R1 = [X|R]
),
),
occurrences(Pos, Required, 1).
not_mentioned(A, B, V):-
 A \= V,
 B \= V.

match_hint(H, [H|_], [X|_], X):-
 !.
match_hint(H, [___T], [___R], X):-
 match_hint(H, T, R, X).
Outline

1 Problem
2 Model
3 Program
4 Search
 - Using input order
 - First Fail Strategy
5 Redundant Modelling
Before Search

Values

Vars
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Input Order

Back to Start
Skip Animation

Choosing the Model 91
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Choosing the Model

Helmut Simonis

Back to Start
Skip Animation
Input Order

12
1
3
14
20

Using input order
First Fail Strategy

Choosing the Model

Helmut Simonis

93
Input Order
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Helmut Simonis

Choosing the Model
Input Order

Choosing the Model

Helmut Simonis

Back to Start

Skip Animation

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Input Order

12
1
14
20 21 22 28
3

Back to Start

Skip Animation

Choosing the Model

Helmut Simonis
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model

Back to Start Skip Animation
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model 98
Input Order

Using input order
First Fail Strategy
Input Order

Using input order

First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Choosing the Model

Helmut Simonis
Input Order

Choosing the Model 101
Input Order
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Input Order

Redundant Modelling

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Choosing the Model
107

Helmut Simonis
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order

Choose the Model

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order
Redundant Modelling

Using input order
First Fail Strategy

Input Order

Back to Start
Skip Animation

Choosing the Model

113
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Choosing the Model
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Input Order
Using input order
First Fail Strategy

Input Order

Back to Start Skip Animation
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model 120

Helmut Simonis
Input Order

Choosing the Model

Helmut Simonis
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Helmut Simonis
Choosing the Model 122
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Helmut Simonis
Choosing the Model
123
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model

Back to Start
Skip Animation
Using input order

First Fail Strategy

Helmut Simonis

Choosing the Model
Input Order

Choosing the Model
Input Order

Using input order
First Fail Strategy
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
128
Input Order

Choosing the Model

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis

Back to Start
Skip Animation
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Input Order

1 1 14 20 21 22 4 13 28 16 1 4 18 21 22 25
1 3 28 1 4 36 42 34 3
Using input order
First Fail Strategy

Input Order

Problem
Model
Program
Search
Redundant Modelling

Back to Start
Skip Animation

Helmut Simonis
Choosing the Model

132
Input Order

Choosing the Model

Helmut Simonis
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Choosing the Model

Helmut Simonis
Input Order

Using input order
First Fail Strategy
Input Order

- Problem
- Model
- Program
- Search
- Redundant Modelling

Using input order
First Fail Strategy

Input Order:

12
1 3 4
14
9 20 21 22 24 28
16
20 31
20 31

Back to Start
Skip Animation

Helmut Simonis
Choosing the Model
Input Order
Input Order

12
1
9
32
3
14
20
21
22
24
16
20
31
17
15
34
28
4

Helmut Simonis Choosing the Model 142
Input Order
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

The diagram illustrates the input order with the numbers 1 through 36 arranged in a tree-like structure. The numbers are connected in a specific order, indicating the sequence in which they are processed or selected. The tree structure helps visualize the redundancy in the modeling process, possibly related to the first fail strategy or other search algorithms. The nodes and branches suggest a hierarchical approach to solving the problem, where decisions at each level affect the subsequent choices.
Input Order

Diagram showing a tree structure with numbers and nodes. The nodes are connected in a hierarchy, representing a search process or a problem-solving strategy. The numbers 1, 3, 4, 9, 12, 14, 16, 17, 20, 21, 22, 24, 28, 31, 32, 34, 36 are displayed at various points on the tree, indicating possible paths or steps in the process.

Redundant Modelling

Using input order

First Fail Strategy

Choosing the Model

Helmut Simonis
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model 149
Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling
Using input order
First Fail Strategy

Input Order
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

12 1
9
32 3
14
20 21 22 24
16
20 31
1
3
34
17
20 31
23
8 10 13 14 16
34
36
28
4

Helmut Simonis
Choosing the Model

Back to Start
Skip Animation
Using input order
First Fail Strategy

Input Order
Input Order
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Using input order
First Fail Strategy

Input Order
Input Order

Redundant Modelling

Problem
Model
Program
Search

Using input order
First Fail Strategy

Choosing the Model

Helmut Simonis
Input Order

Using input order
First Fail Strategy
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Choosing the Model

Helmut Simonis

Back to Start Skip Animation

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search
Using input order
First Fail Strategy
Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order

Choosing the Model
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order

Redundant Modelling

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order
Input Order

Using input order
First Fail Strategy
Input Order

Redundant Modelling

Using input order
First Fail Strategy
Input Order

- Problem
- Model
- Program
- Search
- Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Input Order
Input Order
Input Order

Using input order

First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Helmut Simonis

Choosing the Model
Input Order
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Input Order
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Choosing the Model
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Input Order
Input Order
Input Order
Using input order
First Fail Strategy

Input Order
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Input Order

Helmut Simonis
Choosing the Model 188
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order
Input Order

Using input order
First Fail Strategy

Back to Start Skip Animation

Helmut Simonis Choosing the Model 192
Input Order

Using input order
First Fail Strategy

Choosing the Model
Helmut Simonis
Using input order
First Fail Strategy
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Input Order

Choosing the Model

Back to Start
Skip Animation
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Helmut Simonis
Choosing the Model
Input Order

Using input order

First Fail Strategy

<table>
<thead>
<tr>
<th>12</th>
<th>1</th>
<th>9</th>
<th>32</th>
<th>3</th>
<th>14</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>24</td>
<td>23</td>
<td>28</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>31</td>
<td>1</td>
<td>3</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>24</td>
<td>23</td>
<td>36</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back to Start
Skip Animation
Input Order

Using input order
First Fail Strategy
Input Order

Problem Model Program Search Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model 202
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy
Input Order
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Input Order

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Back to Start
Skip Animation

Choosing the Model

Helmut Simonis

Cork Constraint Computation Centre
Using input order
First Fail Strategy

Input Order
Using input order
First Fail Strategy

Input Order

Back to Start Skip Animation Helmut Simonis Choosing the Model 208
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Input Order

Redundant Modelling

Using input order
First Fail Strategy
Input Order
Using input order
First Fail Strategy
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Input Order
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order
Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Choosing the Model 220
Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Helmut Simonis
Choosing the Model

Back to Start
Skip Animation

Choosing the Model 223
Input Order
Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Helmut Simonis
Choosing the Model

Back to Start
Skip Animation
Using input order
First Fail Strategy

Input Order
Input Order
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Using input order
First Fail Strategy

Input Order
Input Order

Choosing the Model
Using input order
First Fail Strategy

Input Order

Helmut Simonis
Choosing the Model 238
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Input Order

Redundant Modelling

Using input order
First Fail Strategy
Choosing the Model

Input Order

Problem Model Program Search Redundant Modelling

Using input order First Fail Strategy

Helmut Simonis
Input Order

Choosing the Model 243
Input Order

Using input order
First Fail Strategy

Back to Start
Skip Animation
Choosing the Model

Redundant Modelling

Using input order

First Fail Strategy

Input Order

Helmut Simonis
Input Order

Using input order
First Fail Strategy
Input Order

Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model
Input Order

12
1
9
32
3
14
20 21 22 24
14
90
28 31
16
21 22 24
17
15 36

Back to Start
Skip Animation

Choosing the Model
Input Order
Input Order
Input Order

Choosing the Model
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Using input order
First Fail Strategy

Helmut Simonis Choosing the Model 254
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Helmut Simonis
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Using input order
First Fail Strategy

Choosing the Model

Choosing the Model
Input Order
Input Order

<table>
<thead>
<tr>
<th>12</th>
<th>1</th>
<th>9</th>
<th>32</th>
<th>3</th>
<th>14</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>90</td>
<td>28</td>
<td>31</td>
<td>16</td>
<td>21</td>
<td>22</td>
<td>24</td>
<td>23</td>
<td>8</td>
</tr>
</tbody>
</table>
| 28 | 36 | 34 | 4 | 17 | 21 | 24 | 28

Redundant Modelling

First Fail Strategy

Choosing the Model 260
Input Order
Using input order

First Fail Strategy

Input Order
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
264
Input Order

Using input order
First Fail Strategy

Helmut Simonis Choosing the Model 265
Input Order
Input Order
Using input order
First Fail Strategy

Input Order

Problem
Model
Program
Search
Redundant Modelling

Helmut Simonis
Choosing the Model
Redundant Modelling

Using input order
First Fail Strategy

Input Order
Problem Model Program Search Redundant Modelling

Input Order

Using input order
First Fail Strategy

Input Order

Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order

Using input order
First Fail Strategy
Input Order
Input Order

Using input order
First Fail Strategy
Input Order
Input Order
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Problem
Model
Program
Search

Helmut Simonis
Choosing the Model

Back to Start
Skip Animation
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Input Order

Problem
Model
Program
Search

Back to Start
Skip Animation

Helmut Simonis
Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order
Input Order
Problem Model Program Search Redundant Modelling

Input Order

Using input order First Fail Strategy

Choosing the Model

Back to Start

Skip Animation

Helmut Simonis

286
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model 289
Input Order

Using input order
First Fail Strategy

Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model

Back to Start
Skip Animation
Input Order

Using input order
First Fail Strategy

Helmut Simonis Choosing the Model 292
Using input order
First Fail Strategy

Input Order
Input Order
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Using input order
First Fail Strategy

Input Order
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Using input order
First Fail Strategy
Input Order
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Choosing the Model

Helmut Simonis
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy
Input Order
Input Order
Input Order

<table>
<thead>
<tr>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>31</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>39</td>
<td>41</td>
<td>43</td>
<td>45</td>
</tr>
</tbody>
</table>

- **Problem**
- **Model**
- **Program**
- **Search**
- **Redundant Modelling**

Using input order
First Fail Strategy

12	1
9	32
3	14
20	21 22 24
14	90
28	31
16	21 22 24
1	3 28
17	21 24
23	8 10 13 14 16 20 21 22 23 24
1	12
30 31	
2	14
35	
1	12
37	
24	
8	
38	
28	
36	
34	
4	

Back to Start
Skip Animation
Input Order

Choosing the Model 310
Input Order

Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Input Order

Using input order
First Fail Strategy
Input Order

Problem Model Program Search Redundant Modelling

Using input order First Fail Strategy

Helmut Simonis Choosing the Model
Input Order
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Redundant Modelling
Input Order
Input Order

Using input order
First Fail Strategy

Helmut Simonis Choosing the Model 318
Input Order
Input Order

Using input order
First Fail Strategy
Using input order
First Fail Strategy

Input Order
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model

322
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order

Choosing the Model 324
Input Order

Using input order
First Fail Strategy

Problem Model Program Search
Redundant Modelling

Choosing the Model
Input Order

Using input order
First Fail Strategy
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model

Back to Start Skip Animation
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Choosing the Model
Input Order
Input Order

Problem Model Program Search Redundant Modelling

Using input order
First Fail Strategy

Back to Start | Skip Animation

Helmut Simonis Choosing the Model 330
Using input order
First Fail Strategy

Input Order
Input Order

Using input order
First Fail Strategy

Back to Start Skip Animation
Input Order

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
Input Order
Input Order

Using input order
First Fail Strategy

Problem
Model
Program
Search
Redundant Modelling

Input Order

Choosing the Model

Helmut Simonis

Back to Start Skip Animation
Input Order

Problem
Model
Program
Search
Redundant Modelling

Using input order
First Fail Strategy

Helmut Simonis
Choosing the Model
336
Input Order

Using input order
First Fail Strategy
Using input order
First Fail Strategy

Input Order

Problem
Model
Program
Search
Redundant Modelling

Back to Start
Solution
Search Tree with input order
How to improve?

- Try different search strategy
- Use `first_fail` dynamic variable selection
Search Tree with first fail

Helmut Simonis
Choosing the Model
Observation

- It does not work
- Search tree is slightly larger than before!
Missing Propagation

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Day 2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Day 3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Day 4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Day 5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Day 6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Day 7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>
Missing Propagation

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>
Missing Propagation

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>
Adding *value index* Channeling
Improving Handling of Hints

Missing Propagation
Adding *value index* Channeling

Improving Handling of Hints

Missing Propagation

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2 1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>2 5 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td>5 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>8 9 10 11 12 13 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>15 16 17 18 19 20 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td>22 23 24 25 26 27 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>29 30 31 32 33 34 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td>36 37 38 39 40 41 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>43 44 45 46 47 48 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adding value index Channeling
Improving Handling of Hints

Missing Propagation

<table>
<thead>
<tr>
<th>Day 1</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Day 2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Day 3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Day 4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Day 5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Day 6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Day 7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>
Adding value index Channeling

Improving Handling of Hints

Missing Propagation

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7, 5</td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2, 5, 1</td>
</tr>
<tr>
<td>Day 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Day 2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Day 3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Day 4</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Day 5</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Day 6</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Day 7</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>

Helmut Simonis

Choosing the Model

351
Why is this?

- Constraints involved:
 - \texttt{gcc} constraint on row: four variables can use values from this row
 - four occurrence constraints for hints: One of the variables must take this value
- No interaction between constraints, only between constraints and variables
- We do not detect that value 1 can not be used
- Eventual solution respects condition, model is correct
- We are concerned about propagation, not just correctness
Adding Redundant Constraints

- Add constraints which do more propagation, but do not affect solutions
- Lead to smaller search tree, hopefully faster solution
- Introduction requires understanding of (lack of) propagation
- Visualization is key to detect missing propagation
First Attempt: Adding 0/1 Viewpoint

- Day \times Location matrix of 0/1 variables
- Indicates if there is a game on this day at this location
- Row/column sums: 4 games in each row/column
- Hint given for cell: Game variable is 1
Channeling Constraint

- Link pair variables P_i to 0/1 variables Y_j as value-index
- $\exists i$ s.t. $P_i = v \iff Y_v = 1$

Propagation:
- $P_i = v \Rightarrow Y_v = 1$
- $Y_v = 0 \Rightarrow \forall i: P_i \neq v$
- $(\forall i: v \notin d(P_i)) \Rightarrow Y_v = 0$
- $Y_v = 1 \Rightarrow \text{occurrence}(V, P_1...P_n, N), N \geq 1$
Added Program

```prolog
value_set_channeling(L,Hints):-
    dim(Matrix, [7,7]),
    Matrix[1..7,1..7] :: 0..1,
    flatten_array(Matrix, ValueSet),
    value_set_channel(L, ValueSet, 1),
    (for(I,1,7), param(Matrix) do
        sumlist(Matrix[I,1..7], 4),
        sumlist(Matrix[1..7,I], 4)
    ),
    (foreach(K-_, Hints), param(Matrix) do
        coor(K,I,J),
        subscript(Matrix, [I,J], 1)
    ).
```
Before Search

Adding value index Channeling
Improving Handling of Hints

Redundant Modelling

Choosing the Model

Helmut Simonis
Impact of Redundant Constraints

Without

With value index channeling
Search tree with redundant constraints
```
Search tree with redundant constraints
```

```
Problem
Model
Program
Search
Redundant Modelling

Adding value index Channeling
Improving Handling of Hints

Search tree with redundant constraints
```
Search tree with redundant constraints
Search tree with redundant constraints

Adding value index Channeling
Improving Handling of Hints

Redundant Modelling

Helmut Simonis
Choosing the Model

Back to Start
Skip Animation
Search tree with redundant constraints
Solution

Adding *value index* Channeling
Improving Handling of Hints

Choosing the Model
Search Tree
Still Missing Propagation

Game 12 can not be played on day 1 at locations 5 or 6
Still Missing Propagation

Game 12 can not be played on day 1 at locations 5 or 6
Still Missing Propagation

Game 12 can not be played on day 1 at locations 5 or 6
Still Missing Propagation

Game 12 can not be played on day 1 at locations 5 or 6
Still Missing Propagation

Game 12 can not be played on day 1 at locations 5 or 6
Still Missing Propagation

Game 12 can not be played on day 1 at locations 5 or 6
Our model does not deal well with hints

- Preset game is ok, leads to variable assignment
- Preset team is weak, adds new constraint
- As there is no interaction of this constraint with the other constraints, there is no initial domain restriction
- Model is correct, but lazy
Second Attempt: Improving the handling of hints

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
</tr>
</tbody>
</table>

- This value can not be used by pairs not involving team 8
- One of the pairs involving team 8 must use this value
- These values can not be used by any pair involving team 8

Helmut Simonis
Choosing the Model
Second Attempt: Improving the handling of hints

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This value can not be used by pairs not involving team 8
- One of the pairs involving team 8 must use this value
- These values can not be used by any pair involving team 8
Second Attempt: Improving the handling of hints

<table>
<thead>
<tr>
<th>Day</th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This value cannot be used by pairs not involving team 8
- One of the pairs involving team 8 must use this value
- These values cannot be used by any pair involving team 8

Esther Simonis
Choosing the Model
387
Second Attempt: Improving the handling of hints

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 5</td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- This value can not be used by pairs not involving team 8
- One of the pairs involving team 8 must use this value
- These values can not be used by any pair involving team 8
Redundant Constraints

- Red value cannot be used by pairs not involving team 8
- Disequalities

- One of the pairs involving team 8 must use red value
- Occurrences (gcc) constraint

- Yellow values cannot be used by any pair involving team 8
- Disequalities

<table>
<thead>
<tr>
<th></th>
<th>City 1</th>
<th>City 2</th>
<th>City 3</th>
<th>City 4</th>
<th>City 5</th>
<th>City 6</th>
<th>City 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>2</td>
<td>1, 5</td>
<td></td>
<td></td>
<td>7, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>7</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Day 5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Added Program

```prolog
improved_hint(Pos, [Value], L, Contains):-  
  (foreach(X, L), foreach(A-B, Contains),  
   fromto([], R, R1, Required),  
   param(Pos, Value) do  
     (not_mentioned(A, B, Value) ->  
       X #\= Pos, R1 = R  
     ;  
       R1 = [X|R]  
     )  
   ),  
  occurrences(Pos, Required, 1),  
  excluded_locations(Pos, Excluded),  
  exclude_values(Required, Excluded).
```

Helmut Simonis

Choosing the Model
excluded_locations(Pos, Excluded):-
 coor(Pos, X, Y),
 (for(I, 1, 7),
 fromto([], A, A1, E1),
 param(Y, Pos) do
 coor(K, I, Y),
 (Pos = K ->
 A1 = A
 ;
 A1 = [K|A]
)
),
 ...
...
(for(J,1,7),
 fromto(E1,A,A1,Excluded),
 param(X,Pos) do
 coor(K,X,J),
 (Pos = K ->
 A1 = A
 ;
 A1 = [K|A]
)
).
Added Program

```prolog
exclude_values(Vars,Values):-
    (foreach(X,Vars),
        param(Values) do
            (foreach(Value,Values),
                param(X) do
                    X \= Value
            )
    ).
```
Before Search
Impact of improved hint handling

With index set channeling

Improved Hints
We don’t need the value index channeling
It is subsumed by the improved hint treatment
Always worthwhile to check if constraints are still required after modifying model
Conclusions

- Many ways of modelling even simple problems
- Selection of “best” model difficult
 - Depends on constraints available
 - Often needs experimentation
- How do we measure if one model is “better” than another?
 - Execution time?
 - Size of search tree?
 - Scalability?
- Definition of variables is key
- Explore choices by considering mapping operators
Conclusions

- **Channeling - Combining viewpoints**
 - Express some constraints in one, others in second viewpoint
 - Channeling constraints to link the viewpoints
 - Decide which model to use for search

- **Redundant Constraints - Improving constraint propagation**
 - Constraints are logically implied by other constraints
 - Provide more propagation to reduce search space
Speeding up constraint propagation by redundant modeling.

Barbara Smith.
Modelling.

Helmut Simonis.
Models for global constraint applications.
Barbara Smith.
Modelling for Constraint Programming.
http://www-circa.mcs.st-and.ac.uk/cpss2008/slides/
SmithSummerSchool1.pdf
http://www-circa.mcs.st-and.ac.uk/cpss2008/slides/
SmithSummerSchool2.pdf
http://www-circa.mcs.st-and.ac.uk/cpss2008/slides/
SmithSummerSchool3.pdf
http://www-circa.mcs.st-and.ac.uk/cpss2008/slides/
SmithSummerSchool4.pdf
Exercises

1. Is there potential for symmetry breaking in this problem?
2. Develop one of the alternative models considered into a full program and compare its performance.
3. Consider the use of channeling for the N-queens problem, for the Sudoku puzzle. What could you use as a second viewpoint, and how to link the views together?