
Problem
Program

Naive Search
Improvements

Chapter 6: Search Strategies (N-Queens)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department

University College Cork
Ireland

ECLiPSe ELearning Overview

Helmut Simonis Search Strategies 1

Problem
Program

Naive Search
Improvements

Licence

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License.
To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

Helmut Simonis Search Strategies 2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Problem
Program

Naive Search
Improvements

Outline

1 Problem

2 Program

3 Naive Search

4 Improvements

Helmut Simonis Search Strategies 3

Problem
Program

Naive Search
Improvements

What we want to introduce

Importance of search strategy, constraints alone are not
enough
Dynamic variable ordering exploits information from
propagation
Variable and value choice
Hard to find strategy which works all the time
search builtin, flexible search abstraction
Different way of improving stability of search routine

Helmut Simonis Search Strategies 4



Problem
Program

Naive Search
Improvements

Example Problem

N-Queens puzzle
Rather weak constraint propagation
Many solutions, limited number of symmetries
Easy to scale problem size

Helmut Simonis Search Strategies 5

Problem
Program

Naive Search
Improvements

Problem Definition

8-Queens
Place 8 queens on an 8× 8 chessboard so that no queen
attacks another. A queen attacks all cells in horizontal, vertical
and diagonal direction. Generalizes to boards of size N × N.

Solution for board size 8× 8

Helmut Simonis Search Strategies 6



Problem
Program

Naive Search
Improvements

A Bit of History

This is a rather old puzzle
Dudeney (1917) cites Nauck (1850) as source
Certain solutions for all sizes can be constructed, this is
not a hard problem
Long history in AI and CP papers
Important: Haralick and Elliot (1980) describing the first-fail
principle

Helmut Simonis Search Strategies 7

Problem
Program

Naive Search
Improvements

Model
Program (Array version)
Program (List Version)

Basic Model

Cell based Model
A 0/1 variable for each cell to say if it is occupied or not
Constraints on rows, columns and diagonals to enforce
no-attack
N2 variables, 6N − 2 constraints

Column (Row) based Model
A 1..N variable for each column, stating position of queen in
the column
Based on observation that each column must contain
exactly one queen
N variables, N2/2 binary constraints

Helmut Simonis Search Strategies 8



Problem
Program

Naive Search
Improvements

Model
Program (Array version)
Program (List Version)

Model

assign [X1, X2, ...XN ]

s.t.

∀1 ≤ i ≤ N : Xi ∈ 1..N
∀1 ≤ i < j ≤ N : Xi 6= Xj

∀1 ≤ i < j ≤ N : Xi 6= Xj + i − j
∀1 ≤ i < j ≤ N : Xi 6= Xj + j − i

Helmut Simonis Search Strategies 9

Problem
Program

Naive Search
Improvements

Model
Program (Array version)
Program (List Version)

Main Program (Array Version)

:-module(array).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,Array), writeln(Array).

nqueen(N,Array):-
dim(Array,[N]),
Array[1..N] :: 1..N,
alldifferent(Array[1..N]),
noattack(Array,N),
labeling(Array[1..N]).

Helmut Simonis Search Strategies 10



Problem
Program

Naive Search
Improvements

Model
Program (Array version)
Program (List Version)

Generating binary constraints

noattack(Array,N):-
(for(I,1,N-1),
param(Array,N) do

(for(J,I+1,N),
param(Array,I) do

subscript(Array,[I],Xi),
subscript(Array,[J],Xj),
D is I-J,
Xi #\= Xj+D,
Xj #\= Xi+D

)
).

Helmut Simonis Search Strategies 11

Problem
Program

Naive Search
Improvements

Model
Program (Array version)
Program (List Version)

Main Program (List Version)

:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,L), writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
labeling(L).

Helmut Simonis Search Strategies 12



Problem
Program

Naive Search
Improvements

Model
Program (Array version)
Program (List Version)

Generating binary constraints

noattack([]).
noattack([H|T]):-

noattack1(H,T,1),
noattack(T).

noattack1(_,[],_).
noattack1(X,[Y|R],N):-

X #\= Y+N,
Y #\= X+N,
N1 is N+1,
noattack1(X,R,N1).

Helmut Simonis Search Strategies 13

Problem
Program

Naive Search
Improvements

Default Strategy

1

2

3
5

4
2 8

6

4

5
4 8

2

7

4
2 6

8

3

3

4
5 7 8

2

4
3 8

6

4

5
6 8

3 5

7

4
3 5

8

4

3

4
6

5
3 6

8

2

4

5
4 6

2

7

4

5
4 7

2

5

6

7

8
4

2

7

3

6

8

5

1

Helmut Simonis Search Strategies 14



Problem
Program

Naive Search
Improvements

First Solution

1

2

3
5

4
2 8

6

4

5
4 8

2

7

4
2 6

8

3

3

4
5 7 8

2

4
3 8

6

4

5
6 8

3 5

7

4
3 5

8

4

3

4
6

5
3 6

8

2

4

5
4 6

2

7

4

5
4 7

2

5

6

7

8
4

2

7

3

6

8

5

1

Helmut Simonis Search Strategies 15

Problem
Program

Naive Search
Improvements

Observations

Even for small problem size, tree can become large
Not interested in all details
Ignore all automatically fixed variables
For more compact representation abstract failed sub-trees

Helmut Simonis Search Strategies 16



Problem
Program

Naive Search
Improvements

Compact Representation

Number inside triangle: Number of choices
Number under triangle: Number of failures1

2

4

7

3

6

10

4

3

2

3

2

1

2

7

4

1

2

2 6

8

5

1

Helmut Simonis Search Strategies 17

Problem
Program

Naive Search
Improvements

Exploring other board sizes

How stable is the model?
Try all sizes from 4 to 100
Timeout of 100 seconds

Helmut Simonis Search Strategies 18



Problem
Program

Naive Search
Improvements

Naive Stategy, Problem Sizes 4-100

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30

T
im

e[
s]

Problem Size

"naive/all.txt"

Helmut Simonis Search Strategies 19

Problem
Program

Naive Search
Improvements

Observations

Time very reasonable up to size 20
Sizes 20-30 times very variable
Not just linked to problem size
No size greater than 30 solved within timeout

Helmut Simonis Search Strategies 20



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Possible Improvements

Better constraint reasoning
Remodelling problem with 3 alldifferent constraints
Global reasoning as described before
Not explored here

Better control of search
Static vs. dynamic variable ordering
Better value choice
Not using complete depth-first chronological backtracking

Helmut Simonis Search Strategies 21

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Static vs. Dynamic Variable Ordering

Heuristic Static Ordering
Sort variables before search based on heuristic
Most important decisions
Smallest initial domain

Dynamic variable ordering
Use information from constraint propagation
Different orders in different parts of search tree
Use all information available

Helmut Simonis Search Strategies 22



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

First Fail strategy

Dynamic variable ordering
At each step, select variable with smallest domain
Idea: If there is a solution, better chance of finding it
Idea: If there is no solution, smaller number of alternatives
Needs tie-breaking method

Helmut Simonis Search Strategies 23

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Caveat

First fail in many constraint systems have slightly different
tie breakers
Hard to compare result across platforms
Best to compare search trees, i.e. variable choices in all
branches of tree

Helmut Simonis Search Strategies 24



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Modification of Program

:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,L), writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
search(L,0,first_fail,indomain,complete,[]).

Helmut Simonis Search Strategies 25

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

The search Predicate

Packaged search library in ic constraint solver
Provides many different alternative search methods
Just select a combination of keywords
Extensible by user

Helmut Simonis Search Strategies 26



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

search Parameters

search(L,0,first_fail,indomain,complete,[])

1 List of variables (or terms, covered later)
2 0 for list of variables
3 Variable choice, e.g. first_fail, input_order
4 Value choice, e.g. indomain
5 Tree search method, e.g. complete
6 Optional argument (or empty) list

Helmut Simonis Search Strategies 27

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Variable Choice

Determines the order in which variables are assigned
input_order assign variables in static order given
first_fail select variable with smallest domain first
most_constrained like first_fail, tie break based on
number of constraints in which variable occurs
Others, including programmed selection

Helmut Simonis Search Strategies 28



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Value Choice

Determines the order in which values are tested for
selected variables
indomain Start with smallest value, on backtracking try
next larger value
indomain_max Start with largest value
indomain_middle Start with value closest to middle of
domain
indomain_random Choose values in random order

Helmut Simonis Search Strategies 29

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Comparison

Board size 16x16
Naive (Input Order) Strategy
First Fail variable selection

Helmut Simonis Search Strategies 30



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Naive (Input Order) Strategy (Size 16)

1

2

3

4

5

145

209

4

188

322

8

197

358

9

173

292

10

200

326

11

184

282

12

6

7

4

8

4

8

13

6

9

15

12

8

2

3

4

9
4

1

2

8

10
4

11
8

12
7

16

6

15

12

14

9

13

2

5

3

1

Helmut Simonis Search Strategies 31

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

FirstFail Strategy (Size 16)

1

2

3

6

8

13

11

10

9

7
11 14

15

7
11 15

16

13

9
12

14

7
10 13

8

12
8

9

16

14

2

6

7

4

5

3

1

Helmut Simonis Search Strategies 32



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Comparing Solutions

Naive First Fail

Solutions are different!

Helmut Simonis Search Strategies 33

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

FirstFail, Problem Sizes 4-100

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80  90

T
im

e[
s]

Problem Size

"first_fail/all.txt"

Helmut Simonis Search Strategies 34



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Observations

This is much better
But some sizes are much harder
Timeout for sizes 88, 91, 93, 97, 98, 99

Helmut Simonis Search Strategies 35

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Can we do better?

Improved initial ordering
Queens on edges of board are easier to assign
Do hard assignment first, keep simple choices for later
Begin assignment in middle of board

Matching value choice
Values in the middle of board have higher impact
Assign these early at top of search tree
Use indomain_middle for this

Helmut Simonis Search Strategies 36



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Modified Program

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-

nqueen(16,L),writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
reorder(L,R),

search(R,0,first_fail,indomain_middle,complete,[]).

Helmut Simonis Search Strategies 37

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Reordering Variable List

reorder(L,L1):-
halve(L,L,[],Front,Tail),
combine(Front,Tail,L1).

halve([],Tail,Front,Front,Tail).
halve([_],Tail,Front,Front,Tail).
halve([_,_|R],[F|T],Front,Fend,Tail):-

halve(R,T,[F|Front],Fend,Tail).

combine(C,[],C):-!.
combine([],C,C).
combine([A|A1],[B|B1],[B,A|C1]):-

combine(A1,B1,C1).

Helmut Simonis Search Strategies 38



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Start from Middle (Size 16)

9

8

12

5

14

6

4
12

3

15
15 7

13

15
7 1

3

11

16

7
7

11
3

10
2 3

14

15

15

11
3

15

1

11

16

4

5

6

9

10

8

Helmut Simonis Search Strategies 39

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Comparing Solutions

Naive First Fail Middle

Again, solutions are different!

Helmut Simonis Search Strategies 40



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Middle, Problem Sizes 4-100

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100

T
im

e[
s]

Problem Size

"middle/all.txt"

Helmut Simonis Search Strategies 41

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Observations

Not always better than first fail
For size 16, trees are similar size
Timeout only for size 94
But still, one strategy does not work for all problem sizes
There are ways to resolve this!

Helmut Simonis Search Strategies 42



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Approach 1: Heuristic Portfolios

Try multiple strategies for the same problem
With multi-core CPUs, run them in parallel
Only one needs to be successful for each problem

Helmut Simonis Search Strategies 43

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Approach 2: Restart with Randomization

Only spend limited number of backtracks for a search
attempt
When this limit is exceeded, restart at beginning
Requires randomization to explore new search branch
Randomize variable choice by random tie break
Randomize value choice by shuffling values
Needs strategy when to restart

Helmut Simonis Search Strategies 44



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Approach 3: Partial Search

Abandon depth-first, chronological backtracking
Don’t get locked into a failed sub-tree
A wrong decision at a level is not detected, and we have to
explore the complete subtree below to undo that wrong
choice
Explore more of the search tree
Spend time in promising parts of tree

Helmut Simonis Search Strategies 45

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Example: Credit Search

Explore top of tree completely, based on credit
Start with fixed amount of credit
Each node consumes one credit unit
Split remaining credit amongst children
When credit runs out, start bounded backtrack search
Each branch can use only K backtracks
If this limit is exceeded, jump to unexplored top of tree

Helmut Simonis Search Strategies 46



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Credit based search

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-

nqueen(8,L),writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
reorder(L,R),
search(R,0,first_fail,indomain_middle, credit(N,5),[]).

Helmut Simonis Search Strategies 47

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Credit, Search Tree Problem Size 94

48

47

51

44

53

39

59

35

28

68

25

62

32

65

29

66

27

26

61

63

31

64

76

70

77

74

19

20

18

78

79

24

80

17

21

82

81

15

75

11

84

14

16

12

6

9

30

71

83

92

93

69

5

3

72

1

73

2

22

4

85

8

94

13

10

86

87

88

7
7

89
89 17

84

86

7

89
87 17

7

89
89 17

5

3

7
5 84

88

83

88
88

7
7

89
89 17

3

86

4 87

18

87

88

7
7 84

86

7
7 5

3 88

17

7

91

88
18 16

89 15

7

91

88
18 16

91 15

5

4

7
5

88
18 16

84

87

82

7

87

91

88
18 16

89

83

7

5

13

81

78

12

80

9

79

72

27

76

20

19

70

75

74

69

24

22

23

28

67

21

71

25

73

29

65

68

61

26

31

30

66

64

32

63

33

34

62

35

60

58

36

38

59

57

37

56

39

53

55

40

29

66

27

26

61

63

67

70

19

72

77

76

74

17

18

78

16

15

21

75

81

12

20

79

36

22

14

80

13

71

10

83

84

94

82

92

91

23

93

24

90

4

73

2

11

5

3

85

9

8

86

87

88

7
84 10

4

7
84 85

91 3

82

88

7
84 10

83

7
84 2

91

7
10 2

3

5

88

7
84 2

4

7
84 85

83 3

90

88

7
2 85

91

7
10 85

83

4

80

87

6

88
82 83

85 1

5

88
3 4

82

89

6

81

15

7

11

16

72

21

17

74

24

22

70

71

25

75

66

20

28

78

67

23

27

73

61

69

68

29

26

32

31

63

30

65

64

34

62

59

33

60

36

57

58

35

38

37

56

39

53

40

55

54

65

29

66

30

71

70

83

77

86

82

80

79

84

55

26

76

31

22

49

27

19

20

73

75

13

34

74

78

12

11

9

10

5

8

6

69

72

81

4

23

3

85

14

7

1

2

21

87

24

88

18

16

15

89

90
85 17

5

91

90

92

93

94

17

33

56

67

61

54

50

52

58

36

46

41

42

43

40

37

45
2

38

57

60

63

64
7

3

91

5

2

93

92

9

89

8

86

84

6

90

11

85

80

83

87

14

10

94

13

88

78

4

17

1

15

77

82

18

12

74

81

20

16

76

19

79

22

21

70

23

75

73

71

67

26

72

25

65

69

27

24

30

66

68

28

33

29

64

63

62

61

37

32

31

36

60

34

35

59

39

57

53

38

58

56

40

54

55

41

42

50

52

43

51

46

44

45

48

49

47

Helmut Simonis Search Strategies 48



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Credit, Problem Sizes 4-100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  20  40  60  80  100

T
im

e[
s]

Problem Size

"credit/all.txt"

Helmut Simonis Search Strategies 49

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Credit, Problem Sizes 4-200

 0

 0.5

 1

 1.5

 2

 2.5

 0  50  100  150  200

T
im

e[
s]

Problem Size

"credit/all.txt"

Helmut Simonis Search Strategies 50



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Conclusions

Choice of search can have huge impact on performance
Dynamic variable selection can lead to large reduction of
search space
search builtin provides useful abstraction of search
functionality
Depth-first chronologicial backtracking not always best
choice

Helmut Simonis Search Strategies 51

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Outlook

Finite domain with good search reasonable for board sizes
up to 1000
Limitation is memory, not execution time
Memory requirement quadratic as domain changes must
be trailed
Better results possible for repair based methods
N-Queens not a hard problem, so general conclusions
hard to draw

Helmut Simonis Search Strategies 52



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

More Information

Henry Dudeney.
Amusements in Mathematics.
Project Gutenberg, 1917.
http://www.gutenberg.org/etext/16713.

J.L. Lauriere.
ALICE: A language and a program for solving combinatorial
problems.
Artificial Intelligence, 10:29–127, 1978.

R. Haralick and G. Elliot.
Increasing tree search efficiency for constraint satisfaction
problems.
Artificial Intelligence, 14:263–313, 1980.

Helmut Simonis Search Strategies 53

Exercises

Exercises

1 Write a program for the 0/1 model of the puzzle as described above. Explain the
problem with introducing a dynamic variable ordering for this model.

2 It is possible to express the problem with only three alldifferent constraints.
Can you describe this model?

3 What is the impact of using a more powerful consistency method for the
alldifferent constraint in our model? How do the search trees differ to our
solution? Does it pay off in execution time?

4 Describe precisely what the reorder predicate does. You may find it helpful to
run the program with instantiated lists of varying length.

5 The credit search takes two parameters, the total amount of credit and the extra
number of backtracks allowed after the credit runs out. How does the program
behave if you change these parameters? Can you explain this behaviour?

Helmut Simonis Search Strategies 54

http://www.gutenberg.org/etext/16713

	Problem
	Program
	Model
	Program (Array version)
	Program (List Version)

	Naive Search
	Improvements
	Dynamic Variable Choice
	Improved Heuristics
	Making Search More Stable

	Exercises
	Exercises


