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What we want to introduce

Importance of search strategy, constraints alone are not
enough
Dynamic variable ordering exploits information from
propagation
Variable and value choice
Hard to find strategy which works all the time
search builtin, flexible search abstraction
Different way of improving stability of search routine
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Example Problem

N-Queens puzzle
Rather weak constraint propagation
Many solutions, limited number of symmetries
Easy to scale problem size
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Problem Definition

8-Queens
Place 8 queens on an 8× 8 chessboard so that no queen
attacks another. A queen attacks all cells in horizontal, vertical
and diagonal direction. Generalizes to boards of size N × N.

Solution for board size 8× 8
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A Bit of History

This is a rather old puzzle
Dudeney (1917) cites Nauck (1850) as source
Certain solutions for all sizes can be constructed, this is
not a hard problem
Long history in AI and CP papers
Important: Haralick and Elliot (1980) describing the first-fail
principle
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Model
Program (Array version)
Program (List Version)

Basic Model

Cell based Model
A 0/1 variable for each cell to say if it is occupied or not
Constraints on rows, columns and diagonals to enforce
no-attack
N2 variables, 6N − 2 constraints

Column (Row) based Model
A 1..N variable for each column, stating position of queen in
the column
Based on observation that each column must contain
exactly one queen
N variables, N2/2 binary constraints
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Model
Program (Array version)
Program (List Version)

Model

assign [X1, X2, ...XN ]

s.t.

∀1 ≤ i ≤ N : Xi ∈ 1..N
∀1 ≤ i < j ≤ N : Xi 6= Xj

∀1 ≤ i < j ≤ N : Xi 6= Xj + i − j
∀1 ≤ i < j ≤ N : Xi 6= Xj + j − i
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Model
Program (Array version)
Program (List Version)

Main Program (Array Version)

:-module(array).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,Array), writeln(Array).

nqueen(N,Array):-
dim(Array,[N]),
Array[1..N] :: 1..N,
alldifferent(Array[1..N]),
noattack(Array,N),
labeling(Array[1..N]).
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Model
Program (Array version)
Program (List Version)

Generating binary constraints

noattack(Array,N):-
(for(I,1,N-1),
param(Array,N) do

(for(J,I+1,N),
param(Array,I) do

subscript(Array,[I],Xi),
subscript(Array,[J],Xj),
D is I-J,
Xi #\= Xj+D,
Xj #\= Xi+D

)
).
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Model
Program (Array version)
Program (List Version)

Main Program (List Version)

:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,L), writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
labeling(L).
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Model
Program (Array version)
Program (List Version)

Generating binary constraints

noattack([]).
noattack([H|T]):-

noattack1(H,T,1),
noattack(T).

noattack1(_,[],_).
noattack1(X,[Y|R],N):-

X #\= Y+N,
Y #\= X+N,
N1 is N+1,
noattack1(X,R,N1).
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First Solution
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Observations

Even for small problem size, tree can become large
Not interested in all details
Ignore all automatically fixed variables
For more compact representation abstract failed sub-trees
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Compact Representation

Number inside triangle: Number of choices
Number under triangle: Number of failures1
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Exploring other board sizes

How stable is the model?
Try all sizes from 4 to 100
Timeout of 100 seconds

Helmut Simonis Search Strategies 18



Problem
Program

Naive Search
Improvements

Naive Stategy, Problem Sizes 4-100
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Observations

Time very reasonable up to size 20
Sizes 20-30 times very variable
Not just linked to problem size
No size greater than 30 solved within timeout
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Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Possible Improvements

Better constraint reasoning
Remodelling problem with 3 alldifferent constraints
Global reasoning as described before
Not explored here

Better control of search
Static vs. dynamic variable ordering
Better value choice
Not using complete depth-first chronological backtracking
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Making Search More Stable

Static vs. Dynamic Variable Ordering

Heuristic Static Ordering
Sort variables before search based on heuristic
Most important decisions
Smallest initial domain

Dynamic variable ordering
Use information from constraint propagation
Different orders in different parts of search tree
Use all information available
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First Fail strategy

Dynamic variable ordering
At each step, select variable with smallest domain
Idea: If there is a solution, better chance of finding it
Idea: If there is no solution, smaller number of alternatives
Needs tie-breaking method
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Caveat

First fail in many constraint systems have slightly different
tie breakers
Hard to compare result across platforms
Best to compare search trees, i.e. variable choices in all
branches of tree
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Modification of Program

:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,L), writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
search(L,0,first_fail,indomain,complete,[]).
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The search Predicate

Packaged search library in ic constraint solver
Provides many different alternative search methods
Just select a combination of keywords
Extensible by user
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search Parameters

search(L,0,first_fail,indomain,complete,[])

1 List of variables (or terms, covered later)
2 0 for list of variables
3 Variable choice, e.g. first_fail, input_order
4 Value choice, e.g. indomain
5 Tree search method, e.g. complete
6 Optional argument (or empty) list
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Variable Choice

Determines the order in which variables are assigned
input_order assign variables in static order given
first_fail select variable with smallest domain first
most_constrained like first_fail, tie break based on
number of constraints in which variable occurs
Others, including programmed selection
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Value Choice

Determines the order in which values are tested for
selected variables
indomain Start with smallest value, on backtracking try
next larger value
indomain_max Start with largest value
indomain_middle Start with value closest to middle of
domain
indomain_random Choose values in random order
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Comparison

Board size 16x16
Naive (Input Order) Strategy
First Fail variable selection

Helmut Simonis Search Strategies 30



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Naive (Input Order) Strategy (Size 16)
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FirstFail Strategy (Size 16)
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Comparing Solutions

Naive First Fail

Solutions are different!
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FirstFail, Problem Sizes 4-100
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Observations

This is much better
But some sizes are much harder
Timeout for sizes 88, 91, 93, 97, 98, 99

Helmut Simonis Search Strategies 35

Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Can we do better?

Improved initial ordering
Queens on edges of board are easier to assign
Do hard assignment first, keep simple choices for later
Begin assignment in middle of board

Matching value choice
Values in the middle of board have higher impact
Assign these early at top of search tree
Use indomain_middle for this
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Modified Program

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-

nqueen(16,L),writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
reorder(L,R),

search(R,0,first_fail,indomain_middle,complete,[]).
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Reordering Variable List

reorder(L,L1):-
halve(L,L,[],Front,Tail),
combine(Front,Tail,L1).

halve([],Tail,Front,Front,Tail).
halve([_],Tail,Front,Front,Tail).
halve([_,_|R],[F|T],Front,Fend,Tail):-

halve(R,T,[F|Front],Fend,Tail).

combine(C,[],C):-!.
combine([],C,C).
combine([A|A1],[B|B1],[B,A|C1]):-

combine(A1,B1,C1).
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Start from Middle (Size 16)
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Comparing Solutions

Naive First Fail Middle

Again, solutions are different!
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Middle, Problem Sizes 4-100
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Observations

Not always better than first fail
For size 16, trees are similar size
Timeout only for size 94
But still, one strategy does not work for all problem sizes
There are ways to resolve this!
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Approach 1: Heuristic Portfolios

Try multiple strategies for the same problem
With multi-core CPUs, run them in parallel
Only one needs to be successful for each problem
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Approach 2: Restart with Randomization

Only spend limited number of backtracks for a search
attempt
When this limit is exceeded, restart at beginning
Requires randomization to explore new search branch
Randomize variable choice by random tie break
Randomize value choice by shuffling values
Needs strategy when to restart
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Approach 3: Partial Search

Abandon depth-first, chronological backtracking
Don’t get locked into a failed sub-tree
A wrong decision at a level is not detected, and we have to
explore the complete subtree below to undo that wrong
choice
Explore more of the search tree
Spend time in promising parts of tree
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Example: Credit Search

Explore top of tree completely, based on credit
Start with fixed amount of credit
Each node consumes one credit unit
Split remaining credit amongst children
When credit runs out, start bounded backtrack search
Each branch can use only K backtracks
If this limit is exceeded, jump to unexplored top of tree
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Credit based search

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-

nqueen(8,L),writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
reorder(L,R),
search(R,0,first_fail,indomain_middle, credit(N,5),[]).
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Credit, Search Tree Problem Size 94
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Credit, Problem Sizes 4-100
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Credit, Problem Sizes 4-200
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Conclusions

Choice of search can have huge impact on performance
Dynamic variable selection can lead to large reduction of
search space
search builtin provides useful abstraction of search
functionality
Depth-first chronologicial backtracking not always best
choice
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Outlook

Finite domain with good search reasonable for board sizes
up to 1000
Limitation is memory, not execution time
Memory requirement quadratic as domain changes must
be trailed
Better results possible for repair based methods
N-Queens not a hard problem, so general conclusions
hard to draw
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Henry Dudeney.
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R. Haralick and G. Elliot.
Increasing tree search efficiency for constraint satisfaction
problems.
Artificial Intelligence, 14:263–313, 1980.
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Exercises

Exercises

1 Write a program for the 0/1 model of the puzzle as described above. Explain the
problem with introducing a dynamic variable ordering for this model.

2 It is possible to express the problem with only three alldifferent constraints.
Can you describe this model?

3 What is the impact of using a more powerful consistency method for the
alldifferent constraint in our model? How do the search trees differ to our
solution? Does it pay off in execution time?

4 Describe precisely what the reorder predicate does. You may find it helpful to
run the program with instantiated lists of varying length.

5 The credit search takes two parameters, the total amount of credit and the extra
number of backtracks allowed after the credit runs out. How does the program
behave if you change these parameters? Can you explain this behaviour?
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