Chapter 1: Introduction

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELearning
This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
Outline

1. Constraint Programming
2. Chapter Overview
3. Chapter Details
What we want to introduce

- Constraint Programming
- Using ECLiPSe Language
- With Saros Eclipse IDE
Outline

1. Constraint Programming
2. Chapter Overview
3. Chapter Details
Constraint Programming (CP)

- Solve hard combinatorial problems
- With minimal programming effort
- Exploit strategies and heuristics
- Understand and control problem solving
ECLiPSe Language

- Open source constraint programming language
- Flexible toolkit to develop/use constraints
- Contains different constraint solvers
- Here: Use of finite domains/(mixed) integer programming
Aims and Outcomes

- Understand what constraint programming is
- How constraint programs can be applied to a problem
- Which application problems are good candidates for CP
- How to write/run/analyze simple ECLiPSe programs
You should already know about...

- No hard requirements
- Basic understanding of programming assumed
- Useful to have some background in one of:
 - Network Management
 - Integer Programming
 - Combinatorial Optimization
Choices of materials

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slides</td>
<td>PDF files for computer viewing</td>
</tr>
<tr>
<td></td>
<td>Contains animations of visualization</td>
</tr>
<tr>
<td></td>
<td>Large file sizes</td>
</tr>
<tr>
<td>Handout</td>
<td>PDF files for printing</td>
</tr>
<tr>
<td></td>
<td>2 slides per page</td>
</tr>
<tr>
<td></td>
<td>Does not contain all animations</td>
</tr>
<tr>
<td>Transcript</td>
<td>Text of presentation as articles</td>
</tr>
<tr>
<td>Video</td>
<td>Video presentation with audio (640x480 pixels)</td>
</tr>
<tr>
<td>iPhone</td>
<td>Video presentation tuned for iPhone display (480x320 pixels)</td>
</tr>
<tr>
<td>Wiki</td>
<td>Hyperlink to wiki page on this chapter to add comments, corrections and suggestions</td>
</tr>
</tbody>
</table>
Outline

1. Constraint Programming
2. Chapter Overview
3. Chapter Details
<table>
<thead>
<tr>
<th>Chapters</th>
<th>Video</th>
<th>iPhone</th>
<th>Slides</th>
<th>Handout</th>
<th>Wiki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction (You are here)</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>First Steps - Hello World</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Application Overview</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Basic Constraint Reasoning</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Global Constraints</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Search Strategies</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Optimization</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Symmetry Breaking</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Choosing the Model</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Customizing Search</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Limits of Propagation</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Systematic Development</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Visualization Techniques</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Finite Set and Continuous Variables</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>Network Applications</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
<tr>
<td>More Global Constraints</td>
<td>Video</td>
<td>iPhone</td>
<td>Slides</td>
<td>Handout</td>
<td>Wiki</td>
</tr>
</tbody>
</table>
More Chapters

Using Mixed Integer Linear Programming
A Hybrid Model
Comparing Technologies
Working with Implications
Adding Material
Lessons Learned

Video iPhone Slides Handout Wiki
Applications

Application Overview
SEND+MORE=MONEY
Sudoku
N-Queens
Routing and Wavelength Assignment
RWA - Demand Acceptance 1
RWA - Demand Acceptance 2
RWA - Static Design 2
Balanced Incomplete Block Designs
Sports Scheduling
Progressive Party
Costas Array
SONET/SDH Ring Design
Network Applications
Car Sequencing
Shikaku
Introduction

- Aims and Outcomes
- Overview of chapters
- Hyperlinks to all materials

Video iPhone Slides Handout Wiki
First Steps - Hello World

- How to install ECLiPSe and Saros
- Writing a first program
- Running the program
- Where to find information
Application Overview

- Why constraint programming is interesting
- Solving industrial problems with CP
- Main application areas
 - Assignment
 - Scheduling
 - Network problems
 - Transportation
 - Personnel Assignment
Basic Constraint Reasoning - SEND+MORE = MONEY

- Finite Domain variables
- CP: Variables + Constraints + Search
- Bounds reasoning on arithmetic constraints
- Simple visualizers
Global Constraints - Sudoku

- Modelling the Sudoku puzzle
- One model, different behaviours
- Global constraint: alldifferent
- Bounds and domain consistency
- A domain consistent alldifferent

Video iPhone Slides Handout Wiki
Search Strategies - N Queens

- How to search for a solution
- Variable and value choice
- How to avoid deep backtracking
- Partial search strategies
Optimization - Routing and Wavelength Assignment

- Optimization
- Graph algorithms library
- Integer Programming with `eplex`
- Problem decomposition
- Routing and Wavelength Assignment in Optical Networks
Symmetry Breaking - Balanced Incomplete Block Designs

- Balanced Incomplete Block Designs
- Planning Experiments and Testing Features
- Problems with highly symmetrical structure
- Symmetry Breaking with \texttt{lex} constraints
Choosing the Model - Sports Scheduling

- Complex sports scheduling problem
- How to decide which model to use
- Improving reasoning by channeling
Customizing Search - Progressive Party

- Scheduling Meetings between Teams
- Teams only meet once
- Capacity Limits
- Build customized search routines tailored to problem
- Problem decomposition: decide which problem to solve
Limits of Propagation - Costas Array

- Antenna/Sonar Design
- Hard Benchmark Problem
- Naive Enumeration works best
- When clever reasoning doesn’t pay off
- Cautionary Tale
Systematic Development

- Developing Programs
- Testing
- Profiling
- Documentation
Visualization Techniques

- How to visualize constraint programs
- Variable Visualizers
- Understanding Search Trees
- Constraint Visualizers
- Complex Visualizations
Finite Set and Continuous Variables - SONET Design Problem

- Finite set variables
- Continuous domains
- Optimization from below
- Advanced symmetry breaking
- SONET design problem without inter-ring traffic
Network Applications

- Overview of Network Applications
- Traffic Placement
- Capacity Management
- Network Design
- Using Advanced Techniques
More Global Constraints - Car Sequencing

- New global constraints: \texttt{gcc} and \texttt{sequence}
- Choosing a better search strategy
Using Mixed Integer Linear Programming - RWA
Demand Acceptance 1

- Mixed Integer Linear Programming in ECLiPSe
- eplex Library
- Alternative Models for Routing and Wavelength Assignment in Optical Networks
Hybridisation by decomposition
Combination of MIP and FD solver
Best current solution to routing and wavelength assignment problem
Comparing Technologies

- Compare static design and demand acceptance versions of RWA
- See impact of objective function
- Compare finite domain, MIP and SAT solutions
Solving a placement problem without specialized constraints

Decomposition into pattern generation and set partitioning

Using implications to propagate information
Adding Material

- How to add new chapters
- Copying template files
- Configuring templates
- Adding frames to body
- Integrating with other chapters
Lessons Learned

- New ELearning course for ECLiPSe
- Modelling and programming with constraints
- Based on sample problems solved and explained in detail
- A view on core constraint programming skills
- Strong dependence on visualization to explain behavior
Branch from here to all materials
Choose presentation form which suits you