A Problem Classification Scheme - When to use CLP

Helmut Simonis
COSYTEC SA
Overview

◆ Part 1
 – What is Constraint Logic Programming (CLP) ?
 – Competing techniques

◆ Part 2
 – Problem classification scheme

◆ Part 3
 – Problem failures
 – Modeling checklist
 – Comparison studies
 – What really works
What we discuss

- Overview of application domains
- Comprehensive study of industrial usage
 - large scale applications
 - prototypes, studies
- Common characteristics of applications
- Reasons for success/failure
What we don’t discuss

- How to solve problems
- Cost/benefit studies
- Software engineering studies
- Integration issues
- Tool selection
Approach

- **Look what has been done**
 - overview of applications and studies using CLP
 - centered on COSYTEC/ECRC experience
 - results from competing systems may not be up to date

- **Find common points**
 - group applications according to application characteristics

- **Try to explain effects**
 - based on CHIP; results with other tools may be different

- **Group success/failure**
 - personal view
 - new techniques/studies may change this
Part 1

Constraint logic programming
Computation domains

- Finite domains
- Linear arithmetic
- Boolean
- Intervals
- Pseudo Boolean
- Non-linear arithmetic
- Sets, sequences, lists
Incomplete finite domain solver

- **Domain**
 - finite sets of values
 - subsets of natural numbers

- **Need for enumeration**

- **Classification criteria**
 - constraint granularity
 - richness of constraint sets
 - propagation results
 - user definable constraints/control

- **Methods**
 - explicit domain representation
 - bound propagation/ removal of interior values
 - heuristics based on domains
Domain concept

- **Domain variables**
 - subset of natural numbers

- **Variable assignment**
 - `indomain`, non-deterministic instantiation

- **Search and backtracking**

```prolog
labeling([]).
labeling([H|T]):-
    indomain(H),
    labeling(T).
```
Syntactic propagation methods

- **Forward checking**
 - wait until only one variable is left in constraint
 - remove inconsistent values

- **Lookahead**
 - for each variable and each value check if consistent values exist
 - remove inconsistent values
 - repeat whenever constraints change

- **Partial lookahead**
 - bound propagation

\[X \leq Y \]

\[X > Y \]
Bound propagation: Linear terms

\[a_1X_1 + a_2X_2 + \ldots + a_nX_n + c_1 = b_1Y_1 + b_2Y_2 + \ldots + b_mY_m + d_1 \]

\[a_1X_1 + a_2X_2 + \ldots + a_nX_n + c_1 \in [\min_I, \max_I] \]

\[b_1Y_1 + b_2Y_2 + \ldots + b_mY_m + d_1 \in [\min_R, \max_R] \]

\[\min = \max(\min_I, \min_R) \]

\[\max = \min(\max_I, \max_R) \]

\[[X, Y, Z]:: 1..10, 2*X + 3*Y + 3 \neq Z\]

\[X \text{ in } \{1,2\} \]

\[Y = 1 \]

\[Z \text{ in } \{8,9,10\} \]
Symbolic constraints

- **Disequality**
 - X is different from Y

- **Alldifferent**
 - all elements in list are pair-wise different
 - more compact than single disequality, but no better propagation
 - pigeon hole principle -> need for stronger propagation

- **Element**
 - element(X,L,Y)
 - Y is the Xth element of the list L
 - works in both directions
Global constraints

- **Work on sets of variables**
 - global conditions, not local constraints

- **Semantic methods**
 - Operations Research
 - spatial algorithms
 - graph theory
 - network flows

- **Building blocks (high-level constraint primitives)**
 - as general as possible
 - multi-purpose
 - very strong propagation (within acceptable algorithmic complexity)
The Cumulative global constraint

- **Cumulative constraint**
 - Resource limits over periods of time
 - Upper/lower limits
 - Soft/hard limits
 - Gradual constraint relaxation

- **Application**
 - Resource restrictive scheduling, producer consumer constraints, disjunctive schedule, manpower constraints, overtime
The Diffn global constraint

◆ **Diffn constraint**
 – non overlapping areas on n-dimensional rectangles
 – distances between rectangles
 – limit use of areas

◆ **Application**
 – layout, packing, resource assignment, setup, distribution planning, time-tableing
The Cycle global constraint

- **Cycle constraint**
 - Finds cycles in directed graphs with minimal cost
 - Assign resources, find compatible start dates

- **Applications**
 - Tour planning, personnel rotation, distribution problems, production sequencing
The Among global constraint

- **Among constraint**
 - How often do values occur in (sub)sequences
 - based on counting arguments
 - interaction between sequences

- **Applications**
 - production sequencing, time tabling, coloring problems, set covering
The Precedence global constraint

- **Precedence constraint**
 - Combine resource constraints and precedence networks
 - Reasoning on latency (position in network)
 - Co-operation between multiple resources

- **Applications**
 - resource restricted scheduling, channel routing, frequency allocation
The Sequence global constraint

- **Sequence constraint**
 - constraints on pattern inside sequences
 - combinatorial pattern matching
 - counting arguments

- **Applications**
 - Time tabling, personnel assignment,
 - work rules, scheduling with daily working time limits
The power of global constraints

- Multi-functional tools
- Building blocks
Constraint morphology

- Precedence
- Diffn
- Cumulative
- Sequence
- Cycle
- Case
- Alldifferent
- Permutation
- Disjunctive
- Prod/cons
- Among
- Setup
- Circuit
- Element
- Different
- Order
- Resource
- Tour
- Dependency

(c) 1996 COSYTEC SA
Competing techniques

- Linear/integer programming
- Heuristic algorithms
- Decomposition methods
- Neighborhood search
 - simulated annealing
 - tabu search
 - genetic algorithms
- Relaxation methods
Linear/integer programming

- Express problems with linear equalities/inequalities
- Additions required to handle
 - disequality
 - disjunction
- Solve constraint systems with Simplex method
 - other methods exist
 - very well developed tool kits
- Some systems include simple modelling languages
 - generate model from data
- Search for integer solutions
 - cutting planes
 - branch and bound techniques
Advantages
- highly developed mathematical theory
- good tools
- large knowledge base

Disadvantages
- restriction in modeling
 - types of constraints
 - types of variables
- programming with constraints
 - incremental
 - meta programming/explanations
- some problem types do not give good results
 - scheduling
Heuristic algorithms

- Progressive building solutions by adding pieces one at a time
- Items added chosen by heuristics
- Good solutions for weakly constrained problems
- Bad results for strongly constrained problems
 - finding admissible solutions
- **Heuristics should take constraints into account**
 - dynamic, not static ordering required
- **Systems can be very fast**
 - no initial propagation cost
Decomposition techniques

◆ **Cut problem into more manageable parts**
 – helps handle large/complex problems

◆ **Different ways of decomposing problems**
 – Hierarchical
 ♦ **bottom-up and top-down**
 ♦ requires certain problem structure
 – Structural
 ♦ considering different degrees of freedom independently
 – Temporal/Spatial
 ♦ solving sub problems for limited time period or limited number of resources
Branch and bound

- Create successive sub problems by enumeration on variables
- Exploration of search tree
 - pruning of branches
 - lower bound approximation
- Standard OR technique
- Search strategies must be defined carefully
- Very good results for complex problems
- High development effort
Neighborhood search

- Search by finding initial solution and “improving” it
 - feasible initial solution
 - modification function
 - cost evaluation
- Allows different variations
 - steepest ascent
 - hill climbing
 - simulated annealing
 - tabu search
 - genetic algorithms
- Local optimization
Neighborhood search (2)

- **Constraint handling**
 - Constraints expressed in cost
 - Modification function checks constraints

- **Good for additive costs**
 - Local changes which improve costs

- **Difficult for very constrained problems**
 - Finding initial solution
 - Admissible modifications
Relaxation methods

- Solving “simpler” problem helps finding solution to complex problems
- Ignoring/simplifying certain constraints
- Obtain lower/upper bounds
- Proof of optimality
- Initial solutions
Part 2

Problem classification scheme
Problem classification scheme

- Overview of attempts to solve problems
- Some large, operational systems
- Many examples are studies, not ‘real’ systems
- Many models do not scale (I think)
- Shows which areas are susceptible to approach
Overview

- Hardware design
- Compilation
- Financial problems
- Placement
- Cutting problems
- Stand allocation
- Air traffic control
- Frequency allocation
- Network configuration
- Product design
- Production step planning
- Production sequencing
- Production scheduling
- Satellite tasking
- Maintenance planning
- Product blending
- Time tabling
- Crew rotation
- Aircraft rotation
- Transport
- Personnel assignment
- Personnel requirement planning
Hardware design

- **Different domains**
 - Circuit verification
 - check consistency with specification
 - Diagnosis
 - find/explain fault in defective machine
 - Testing
 - prepare tests to confirm proper operation
 - Synthesis
 - create hardware design from specification
 - Layout
 - create geometrical structure from design
Characteristics

- **Specialized solvers**
 - problem specific
 - not reusable for other domains

- **Narrow domain**
 - industrial usage restricted to few companies

- **Constraint methods used in conventional algorithms**
 - example D-Algorithm

- **Successful in right environment**
 - CVE (Siemens)
 - hardware verification tool for ASIC circuits
Compilation

- **Register allocation**
 - graph coloring problem
- **Instruction scheduling**
 - pipelining/parallel execution
- **Microcode labeling (ECRC)**
 - distributing microcode over address space; simplified addressing
- **DSP scheduling (ECRC, cc(FD), COSYTEC)**
 - cyclic scheduling
Characteristics

- **Graph coloring problems**
- **Simple scheduling**
 - cyclic problems
 - disjunctive resources
 - machine assignment problems
- **Difficult to achieve in real-time**
Financial problems

- **Portfolio management (SEVE - CDC)**
 - which shares to buy/sell
 - assumption on economic development
 - mixed mode solver
 - operational since 92
- **Asset/liability (Amro Bank)**
- **Stock option trading (C. Lassez)**
- **Constraint Spreadsheet (Hyvonnenn)**
Characteristics

- **Continuous domain**
 - use rationals or reals
- **Non-linear constraints common**
 - linearisation
 - implement non-linear solver on top of linear one
- **Problem often incremental**
 - not all constraints known from beginning
 - programming with constraints (explanation, what-if)
- **Large problem instances**
- **Possible alternative techniques**
 - non-linear interval solvers
- **Requires proprietary information**
 - model (not only data) often confidential
Placement

- **HIT container stacking (ICL)**
 - where to put containers to easily retrieve them later

- **Lorry loading (EBI)**
 - loading unloading of boxes in lorry
 - support constraint
 - stacking order
 - first in / last out

- **Container loading (Michelin)**
 - added degree of freedom

- **Map labeling (ECRC, Bull, COSYTEC, Gist)**
 - where to put labels on map
 - preference position not always achievable
 - depends on right model
Characteristics

- **2D**
 - often overconstrained
 - strong preferences not always achievable
 - very good results can be obtained

- **3/4D**
 - very hard or very easy
 - needs powerful heuristics

- **General**
 - very poor results with syntactic methods
 - some common constraints very hard to express
 - specialized domain heuristics not easy to compute
Cutting problems

- **Cutting stock (ECRC)**
 - cutting rectangles from rectangles
 - 2D finite problem

- **Made (Dassault)**
 - combining sheet metal pieces for aircraft parts
 - approximated by combination of rectangles

- **Glass cutting (Oz)**

- **Wood cutting for furniture (Prolog III)**
Characteristics

- **Strong competition from MIP**
 - continuous roll cutting

- **Problems to handle irregular shapes**
 - leather, clothes
 - problem for any mathematical model

- **Good heuristic solutions**
Stand allocation

- **APACHE (COSYTEC)**
 - stand allocation for airport

- **HIT (ICL)**
 - assign ships to berths in container harbor

- **Train platform assignment (Ilog, Siemens)**
 - assign trains to platforms in at stations

- **Refinery berth allocation (ISAB)**
 - where to load/unload ships in refinery
APACHE

◆ Stand allocation system
 – originally developed with Air France, CDG2
 – packaged for large airports

◆ Complex constraint problem
 – technical & operational constraints
 – incremental re-scheduler

◆ Cost model
 – maximize no. passengers in contact
 – minimize towing, bus usage

◆ Status
 – technology demonstrator
Characteristics

- **Base constraint relatively easy**
 - Graph coloring in interval graphs
 - Complete propagation possible for alldifferent
 - additional constraints/cost model more complex

- **Rescheduling requirements**
 - constraints change with every delay
 - resolving problem without disturbing all of previous solution

- **Solver can be very fast**
 - few seconds

- **Proof of optimality very complex due to symmetry**
 - needs separate lower bound calculation
Air traffic control

- **CENA**
 - slot capacity
- **Thomson**
 - landing approach
- **Matra**
 - mission planning (military)
Characteristics

- **Temporal and spatial constraints**
 - Box model
- **General ATC problem very hard to express**
 - trajectories as 4D objects
 - “closeness” of trajectories
- **Large problem sizes**
- **Special case solutions interesting**
Frequency allocation

- Thomson
- SICS
- Celar Benchmark (Bull, Ilog, COSYTEC)
Characteristics

- **Optimization difficult**
 - symmetry reduction

- **Solver too weak**
 - cliques in graphs

- **Locally overconstrained**
 - some constraints are actually preferences

- **Model may vary depending on degree of exactness**
 - disequality/distance constraints
Network configuration

- **Locarim (France Telecom, COSYTEC)**
 - cabling of building
- **Planets (UCB, Enher)**
 - electrical power network reconfiguration
- **Load Balancing in Banking networks (ICON)**
 - distributed applications
 - control network traffic
- **Water Networks (UCB)**
FRANCE TELECOM - LOCARIM

- Intelligent cabling system for large buildings
 - developed with Telesystemes for France Telecom

- Application
 - input scanned drawing
 - specify requirements

- Optimization
 - minimize cabling, drilling, switches
 - shortest path

- Status
 - operational in 5 Telecom sites
 - generates quotations
Characteristics

- Different types of problems
- Many related to warehouse location
 - with/without capacity
- Mixed methods worthwhile
 - finite domain solver
 - rational solver
- Competition from MIP
 - simple model
 - nice mathematical properties
Product design

- **Key system generation (Vachette, Bull)**
 - design key structure for large buildings
 - one key opens multiple doors
 - security restrictions in different levels
 - parts of key control different locks
 - interaction of different access groups

- **Mechanical design (Cisa)**
Production step planning

- **COCA (Dassault)**
 - define in which order the production steps are performed
 - basis for scheduling
 - very large problem
 - several 10000 steps
 - decomposition possible
Characteristics

- **Temporal and spatial constraints**
 - some steps must be done before others

- **Access to location**
 - not possible to work on two adjacent compartments concurrently

- **Rotation state of aircraft frame**
 - allows /excludes access

- **Safety rules**
 - operations may not be performed at the same time
Production sequencing

- **Amylum (Beyers)**
 - Glucose production

- **Cerestar (Beyers)**
 - Glucose production

- **Car Sequencing (ECRC, COSYTEC)**
 - Assembly line scheduling

- **Bowater (Bull, COSYTEC)**
 - Carton printing, reuse of colors

- **MOSES (COSYTEC)**
 - Animal feed production
Characteristics

- **Forbidden sequences**
 - this product must never follow that product
 - this product should not follow that product

- **Setup cost/time**
 - cleaning time
 - downgrading product
 - waste

- **Combination with scheduling**
 - due dates
 - machine choice

- **Additional constraints**
 - capacity
Production scheduling

- **Plane (Dassault)**
 - mid/long term scheduling
- **Made (Dassault)**
 - short term work cell scheduling
- **Saveplan (Sligos)**
 - production scheduling
- **ATLAS (Beyers, COSYTEC)**
 - herbicide manufacturing
- **MOSES (COSYTEC)**
 - animal feed production
- **Trefi Metaux (Sligos)**
 - heavy industry production scheduling
Chemical packaging & inventory control system
- developed for US agro-chemical supplier
- joint development with Beyers & Partners

Extensive use of CHIP interfaces
- XGIP GUI interfacing to RDBMS
- multi-user UNIX & PC system

Scheduling
- formulation & packaging
- checks highlights problems

Benefits and status
- operational since Jun 93
- better control, reduced stock
VCA - ORDO-VAP

◆ Production scheduling for glass factory
 – integrated with Ingres Information system
 – manual and automatic scheduling

◆ Constraints
 – multi-stage manufacturing
 – consumer/producer
 – varying production rates, setup
 – balance manpower utilization
 – minimize downtime

◆ Status
 – 2 phases
 – operational in March 96
 – will replace manual operation
Characteristics

- **Large systems operational**
- **Complete environments**
 - integration
 - frameworks
- **Many types of constraints**
 - precedence
 - disjunctive /cumulative resources
 - producer/consumer
 - machine assignment
 - setup
 - due dates/release dates
- **Well developed methodology**
Satellite tasking

- **Dassault**
 - low earth orbit satellite configuration power management

- **Alcatel**
 - earth observation scheduling
 - memory
 - transmission times
 - energy use
 - observation windows
Maintenance planning

- **Sema**
 - aircraft maintenance
- **Coopers & Lybrand**
- **Hong Kong Public Transport**
 - maintenance jobs on train/subway service
- **Edia - SNCF**
Characteristics

- **Cost model very weak**
 - interested in sum of costs

- **Problem set not known a priori**
 - some jobs may be postponed/canceled

- **Problem separable in time periods**
 - sequential/independent optimization
 - reduces complexity
 - provides lower bounds/heuristics
Product Blending

- **Forward (TECHNIP, COSYTEC)**
 - gasoline blending
 - crude mix
- **Sanofi (ILOG, COSYTEC)**
 - cosmetics
- **Michelin**
 - rubber blending, rework optimization
Oil refinery production scheduling
- joint development by TECHNIP and COSYTEC
- incorporates ELF FORWARD LP tool

Schedules daily production
- crude arrival -> processing -> delivery
- design, optimize and simulate

Product Blending
- explanation facilities
- handling of overconstrained problems

Status
- generic tool developed in 240 man days
- operational since June 94
- Operational at FINA, ISAB, BP
Characteristics

◆ **Strong domain for LP/IP**
 – constraint model only based on inequalities
 – finite domain solvers don’t offer much
 – continuous domains/cutting plane methods

◆ **Constraints can provide explanation facility**
 – programming with constraints
 – advantage over LP packages

◆ **Handles smaller problem size than LP/MIP systems**
Time tabling

- **School/university time tables**
 - which courses are held
 - when
 - by whom
 - in which room

- **Exam scheduling**
 - which exams to place when in which rooms, possibility to combine exams in same room

- **Training course scheduling (Nat West)**
 - which courses to run in which week of year
 - limited accommodation
 - course sequences
 - course repetition
<table>
<thead>
<tr>
<th>Time</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-16</td>
<td></td>
<td></td>
<td>Analysis I</td>
<td>Prof A</td>
<td>Room 221</td>
</tr>
<tr>
<td>16-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Personnel

Resource

Time
Characteristics

- **Experimental systems**
- **Solvers too weak**
 - easy problems simple
 - hard problems impossible
- **Relaxation of constraints required**
 - overconstrained problems
 - strong preferences
- **Balancing of time table**
 - equal quality for everybody
- **Dedicated, specialized packages exist**
Crew rotation

- Pilot (SAS, COSYTEC)
 - re-planning
- DAYSY (Lufthansa, COSYTEC, Sema, U. Patras)
 - day to day management
- Air Littoral (PrologIA)
 - use of Simplex
- Servair (GSI)
 - capacity planning/scheduling/assignment
- NWRR (COSYTEC)
 - train driver rotations
- SuperBus (PrologIA, Brunel U.)
 - public transport
Intelligent re-scheduling
- SAS have 115 aircraft, 3 home bases, 3000 cabin 2000 flight
- initial development by COSYTEC continued by SAS Data

Solve open flights
- delay, illness, cancellation, new flight
- 50% in 5 minutes for 100 crew
- 80% in 5 hours for 1000 crew

Black box solver
- based on cycle constraint
- constraint + legality checker

Status
- operational Sept 1995
Characteristics

- Very complex constraints
 - evolving over time

- **Difficult to express/check**
 - dedicated rule checking systems

- Very large problem sets
 - several thousand crew
 - several ten thousand flights

- Crew preferences
 - incompatible with each other

- Soft/Hard rules
 - Government regulations, safety regulations, seniority rules

- Needs **very expressive/powerful solver**

- Competition: very strong monthly planning tools based on LP
Aircraft/Train rotation

- **SNCF - Bull**
 - capacity planning: which trains to move overnight
 - specialized algorithm: min flow

- **SNCF - Ilog**
 - train engine rotation
 - specialized algorithm: TSP

- **BA - IC Parc**
 - aircraft rotations
 - repair methods
Problem scheme

- **List of services**
 - Dep 10:00 CDG Arr 10:05 LHR
- **Covering services with available engines**
- **Passive movement to make machines available at right place**
- **Maintenance/service stops**
- **Balancing/minimizing engine usage**
- **Location continuity**
 - Start/stop at depot/home base
Characteristics

- **Less constrained than crew problems**
 - no unions to worry about

- **Location continuity**
 - added dimension over scheduling

- **Large problem sizes**
 - all of French train services; decomposition possible

- **Unknown qty of passive transport required**
 - difficult to express a priori with constraints

- **Results show problems of expressing/solving with syntactic methods**
 - resolve problem with dedicated, non incremental algorithm
Transport

- EVA (EDF, Gist, COSYTEC)
 - nuclear waste transport

- EBI
 - warehouse - customer transport

- TACT (COSYTEC)
 - integrated transport food manufacturing

- PASZA (COSYTEC)
 - feed mill transport

- SIPE
 - bus transport
EDF - EVA

- **Transportation of nuclear waste**
 - developed by GIST + COSYTEC
 - plans evacuation and transport for 54 sites

- **Constraints**
 - availability of transport vehicles and vessels
 - number and capacity of storage tanks
 - compatibility of waste to vessels
 - size of convoy, time

- **Status**
 - operational since Oct 94
 - 6 month plan in 5 minutes
TACT

◆ Transport planning and assignment
 – plans activities for factories
 – assigns activities to teams, drivers, lorries, fork lifts

◆ Problem solver
 – generates minimum no trips
 – balance production, optimizes resources

◆ Rules, constraints
 – production, storage, legal, vet
 – roster, workforce, unavailability

◆ Status
 – operational Feb 1995
 – developed Aug 94-Jan 95
Characteristics

- **Location continuity**
 - start end of trips
 - depots

- **Passive transportation**
 - unknown quantity

- **Important scheduling component**
 - driven by crucial resource (lorries, drivers, supply/demand side)

- **Producer/Consumer behavior**
 - JIT delivery
 - limited stock, shelf life

- **Even more difficult if work rules must be handled**
 - total driving time, breaks, rest periods, start/end time, rota
Personnel assignment

- **Servair (GSI, ITMI, COSYTEC)**
 - train bar/restaurant
- **RFO (Gist, COSYTEC)**
 - reporters/technicians for TV/radio
- **Banque Bruxelles Lambert (Ilog)**
 - bank personnel
- **Nurse scheduling (Ilog, Bull)**
 - hospital
- **Crisis Management (Bull)**
 - Olympic winter games 1992
Assignment of technical staff to tasks
- overseas radio broadcaster - Radio France Outre-mer
- joint development by GIST and COSYTEC

Features
- schedule manually, check, automatic
- rule builder to specify cost formulas

Optimization
- minimize overtime, temporary staff
- compute cost of schedule

Status
- operational Dec 95
- to be installed worldwide in 9 sites
SERVAIR - CREW

◆ Crew rostering system
 – assign service staff to TGV train timetable
 – joint implementation with GSI

◆ Problem solver
 – generates tours/cycles
 – assigns skilled personnel

◆ Constraints
 – union, physical, calendar

◆ Status
 – operational since Mar 1995
Characteristics

- **Work rules**
 - as for transport and rostering

- **Balancing**
 - spread difficult/tedious jobs
 - total work time per month

- **Perfect problems very hard**
Personnel requirement planning

- **Ghost (Sligos)**
 - capacity planning credit card service

- **Havas (COSYTEC, EBI)**
 - ground crew management

- **911 planning (2LP)**
 - emergency center capacity planning
Characteristics

- Rather small problem size
- Covering demand per time unit
- Lower bound constraints
- Alternative models
 - integer programming: inequalities
 - capacity planning: cumulative
- IP approach quite strong
Part 3

Evaluation
Which problems failed

- Not much information available
- Paper by J.Y. Cras, ILPS 1994
- Difference between
 - project failure
 - customer is not happy
 - problem failure
 - constraint researcher is not happy
Project failure

- **Project management**
 - technically too ambitious
 - due dates not achievable
 - effort not estimated correctly

- **End - user acceptance**
 - end user not involved early on

- **Business process change**
 - need disappears while system is being developed
 - problem changes beyond recognition
Problem failure

- Wrong problem
- Wrong solver
- Wrong model
- Wrong test case
Wrong problem

- **Solving the wrong problem**
 - focusing on technology rather than need of customer
- **Pure problem**
 - specialized methods/algorithms exist
- **Relaxation essential**
 - if no constraints are hard, then there is no propagation
- **Too generic**
 - solving “the generic scheduling” problem
 - using problem specific knowledge is key to success
Wrong solver

- **Wrong domain**
 - ex. solving sets of inequalities by bound propagation
 - find most general solution where only one particular solution is required

- **Solver too weak**
 - idea of solving hard problems by simple methods
 - this is why global constraints were introduced
Wrong model

- **Bad choice of variables**
 - avoid 0/1 domain variables
 - avoid very large domains

- **Constraints do not propagate**
 - important to express all constraints inside model
 - not enough if constraints do not propagate

- **Bad strategy**
 - use problem specific knowledge
 - try different methods

- **Cost model too weak**
 - important when doing search
 - proving optimality only possible with good lower cost bound
Wrong test case

- Problem does not scale
 - classical AI problem
 - test with real data
 - see whether actual solution satisfies constraint model
 - ideally, test with full size data

- Not enough test cases
 - easy to over-optimize one test case (benchmarks)
 - day to day system requires test data from all time periods
 - seasonal demand variation
 - peak business
 - special cases (holidays)
Modeling check list

- Soft constraints
- Overconstrained problems
- Preferences
- Balancing
- Non-local cost
- Planning type problems
- Passive transport
Comparison studies

- Comparing two methods is much more difficult than testing one
- Most tests topical or small scale
- Some comparison of benchmark results
- Tests shown
 - CLP - OR
 - CLP - LP/MIP
 - CLP - AI
 - CLP - local search
 - CLP/FD - CLP/R
CLP - OR (specialized algorithms)

- Warehouse location
- Job shop
- Patterson / Alvarez benchmarks
CLP - LP/MIP

- Warehouse location
- Setup scheduling
- Cutting stock
- ATC slot allocation
- Progressive party problem
- Network flow (Train rotations)
- Disposing problem (Bisdorff)
- 2LP
- Banking networks
CLP - AI

- Car sequencing
CLP - Local search

- Car sequencing
- Map labeling
- Scheduling (BT)
CLP vs CLP

- Comparison of different solver methods for some applications
- Warehouse location
- Hoist scheduling
- Bisdorff
What really works

- **Which of the problems should be solved by CLP**
 - CLP appropriate tool
 - competing techniques have no clear advantage

- **Methodology**
 - how to express constraints
 - standard models
 - sets of heuristics available
Scheduling

- **Good methodology**
 - see PAP 95 tutorial on planning and scheduling

- **Constraints competitive**
 - benchmark results are comparable to best dedicated systems

- **Good strategies known**
 - both AI and OR type heuristics

- **Projects can still be complex**
 - interfaces
 - integration
 - strategies
Allocation

- **Solver rather simple**
 - disequality/alldifferent/diffn
 - pure problem easy
 - complete propagation for significant sub-problems

- **Rescheduling rapid**
 - solver finds solution in few seconds

- **Much simpler than scheduling**
 - do not generalize if not required
Transport

- **Solver quite complex**
 - location continuity
 - unknown amount of passive transport
- **Multiple loading/unloading a problem**
 - interaction of all activities in one tour
- **Good strategies required**
- **Problem size can be limiting**
 - several hundred nodes OK
- **Handling of personnel work rules makes things very complex**
Crew rotation

- **Work rules can be very complex**
 - point systems
 - large amounts of data (ex pilot qualification for airports)
- **Preferences not handled well**
- **Does not handle long periods**
 - too many activities
 - not enough connection between early and late activities
- **Rest periods**
 - expressing constraints already complex
 - deducing information very hard
- **No other tool handles constraints well**
 - Column generation: generate & combine method
How to continue?
Sources

- Examples drawn from multitude of sources
- Some are “personal communication” only
- Literature list
Summary

- **CLP - Emphasis on finite domains**
 - not enough data for other problem solvers
- **Application classification**
 - what has been done in the field
- **Explaining problems**
 - why projects/problems fail
- **Modeling checklist**
 - what to watch out for